A Model of a Non-expanding Universe Driven by the Vacuum Space Properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33139
A Model of a Non-expanding Universe Driven by the Vacuum Space Properties

Authors: Yongbai Yin

Abstract:

We propose a non-expanding model of the universe based on the non-changing fine-structure constant and the Einstein’s space-time relativity theory by assuming that the vacuum space permittivity is a decaying function over the time span of the universe. This model consistently explains the Redshift, the “expanding” and the age of the universe as in the “Big Bang” model. It also offers an interpretation on the unexpected “accelerated expanding” universe and the origin of the mystery “Dark matters” which the “big Bang” model has failed to explain. This model predicts that the universe began with an “extremely cold” rather than “extremely hot” stage to explain the cosmic microwave background radiation and the age of the universe without introducing the problematic singularity and inflationary issues introduced in the “Big Bang” model. It predicts mathematically that galaxies could end into blackholes. Because blackholes should have the same space conditions as those of the vacuum space in the beginning of the universe in this model, this work paves the way to support the cyclic universes model without violating the first law of thermodynamics.

Keywords: Cosmic microwave background, dark energy, dark matters, expanding universe, evolution of the universe, blackholes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 0

References:


[1] Belenkiy, A.; (2012). “Alexander Friedmann and the origins of modern cosmology”. Physics Today. 65(10): 38–43.
[2] Nemiroff, R.J.; Patla, B.; (2008). “Adventures in Friedmann cosmology: A detailed expansion of the cosmological Friedmann equations”. American Journal of Physics. 76(3): 265–276.
[3] Carroll, S.M.; Kaplinghat, M.; (2002). “Testing the Friedmann equation: The expansion of the universe during big-bang nucleosynthesis”. Physical Review D. 65(6): 063507.
[4] Mörtsell, E.; (2016). “Cosmological histories from the Friedmann equation: The Universe as a particle”. European Journal of Physics. 37(5): 055603.
[5] Zwicky, F.N.; (1933). “The red shift of extragalactic nebulae”. Helvetica Physica Acta. 6:110–127.
[6] Zwick, F.N.; (1937). “On the Masses of Nebulae and of Clusters of Nebulae”. The Astrophysical Journal. 86: 217–246.
[7] Taylor, A. N.; Gravitational lens magnification and the mass of Abell 1689. The Astrophysical Journal. 501(2), 539–553, (1998).
[8] Refregier, A.; (2003). “Weak gravitational lensing by large-scale structure”. Annual Review of Astronomy and Astrophysics. 41(1): 645–668.
[9] The International System of Units (SI), 9th ed.; Bureau International des Poids et Mesures: Sèvres, France, 2019. https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf/2d2b50bf-f2b4-9661-f402-5f9d66e4b507
[10] Einstein, A.; (1916). “The Foundations of the General Theory of Relativity”, Ann. Phys. 49.
[11] Murphy, M.T.; Webb, J.K.; Flambaum, V.V.; Dzuba, V.A.; Churchill, C.W.; Prochaska, J.X.; et al. (2001). “Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results”. Monthly Notices of the Royal Astronomical Society. 327(4): 1208–1222.
[12] Webb, J.K.; Murphy, M.T.; Flambaum, V.V.; Dzuba, V.A.; Barrow, J.D.; Churchill, C.W.; et al. (2001). “Further evidence for cosmological evolution of the fine structure constant”. Physical Review Letters. 87(9): 091301.
[13] Murphy, M.T.; Webb, J.K.; Flambaum, V.V.; (2003). “Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra”, Monthly Notices of the Royal Astronomical Society. 345(2): 609–638.
[14] Chand, H.; Srianand, R.; Petitjean, P.; Aracil, B.; (2004). “Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample”. Astronomy & Astrophysics. 417(3): 853–871.
[15] Frieman, J.A.; Turner, M.S.; Huterer, D.; (2008). "Dark Energy and the Accelerating Universe". Annual Review of Astronomy and Astrophysics. 46 (1): 385–432.
[16] Keel, W.C.; (2007). “The Road to Galaxy Formation (2nd ed.). Springer. pp. 7–8. ISBN 978-3-540-72534-3.
[17] Freedman, W. L.; (2001). “Final Results from the Hubble Space Telescope Key Project to measure the Hubble constant”. The -Astrophysical Journal. 553 (1): 47–72.
[18] Carnall, A.C.; McLure, R.J.; Dunlop, J.S.; McLeod, D.J.; Wild, V.; Cullen, F.; at al. (2023). “A massive quiescent galaxy at redshift 4.658” Nature, 619, 716–719.
[19] Jiang, L.; Kashikawa N.; Wang, S.; Walth, G.; Ho, L.C.; Cai, Z.; et al. (2021). “Evidence for GN-z11 as a luminous galaxy at redshift 11”. Nature Astronomy. 5: 256-261.
[20] Jarosik, N.; Bennett, C.L.; Dunkley, J.; Gold, D.; Greason, M.R.; Halpern, M.; et al. (2011). “Seven-year Wilson microwave anisotropy probe (WMAP) observations: Sky maps, systematic errors, and basic results”. Astrophysical Journal Supplement. 192(2): 14.
[21] Kutner, Marc Leslie. (2003). “Astronomy: a physical perspective” (2nd ed.). Cambridge, U.K.; New York: Cambridge University Press. p. 148. ISBN 978-0-521-82196-4.
[22] Komatsu, Eiichiro. (2022). “New physics from the polarized light of the cosmic microwave background”. Nature Reviews Physics. 4(7): 452-469.