Evaluation of Hydrocarbons in Tissues of Bivalve Mollusks from the Red Sea Coast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Evaluation of Hydrocarbons in Tissues of Bivalve Mollusks from the Red Sea Coast

Authors: A. Aljohani, M. Orif

Abstract:

The concentration of polycyclic aromatic hydrocarbons (PAH) in clams (A. glabrata) was examined in samples collected from Alseef Beach, 30 km south of Jeddah city. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the 14 PAHs. The concentration of total PAHs was found to range from 11.521 to 40.149 ng/gdw with a mean concentration of 21.857 ng/gdw, which is lower compared to similar studies. The lower molecular weight PAHs with three rings comprised 18.14% of the total PAH concentrations in the clams, while the high molecular weight PAHs with four rings, five rings, and six rings account for 81.86%. Diagnostic ratios for PAH source distinction suggested pyrogenic or anthropogenic sources.

Keywords: Bivalves, biomonitoring, hydrocarbons, PAHs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97

References:


[1] Awad, H.: (1979), ‘Determination of rate of hydrocarbon accumulation by mussels in chronic pollution conditions’, Science et Peche 291, 9–15.
[2] Qari, H. and Hassan, I., (2014). Removal of Pollutants from Waste Water Using Dunaliella Algae. Biomedical & Pharmacology Journal, 7(1), pp.147-151.
[3] Al-Farawati, R. K., El-Maradny, A., & Niaz, G. R. (2006). Profile of Faecal Sterols and Pah in Sewage Polluted Marine Environment along the Eastern Red Sea Coast, of Jeddah, Saudi Arabia. International Journal of Oceans and Oceanography, 1(2), 287-301.‏
[4] Oros, D. R., & Ross, J. R. (2004). Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments. Marine Chemistry, 86(3-4), 169-184.‏
[5] Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic geochemistry, 33(4), 489-515.‏
[6] Giulio Di, R.T., & Hinton, D.E. (Eds.). (2008). The Toxicology of Fishes (1st ed.). CRC Press. https://doi.org/10.1201/9780203647295
[7] U.S. EPA. EPA's Report on the Environment (ROE) (2008). U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-07/045F (NTIS PB2008-112484), 2008.
[8] Fernandes MB, Sicre M-A, Boireau A, Tronczynski J (1997) Polyaromatic Hydrocarbon (PAH) Distributions in the Seine River and its Estuary. Mar Pol Bul, 34(11); 857 – 867.
[9] Downes, B. J., L. A. Barmuta, P. G. Fairweather, D. P. Faith, M. J. Keough, P. S. Lake, B. D. Mapstone, and G. P. Quinn. 2002. Monitoring ecological impacts: concepts and practice in flowing water. Cambridge University Press, New York, New York, USA.
[10] Igwe. J.C, Ukaogo .P. O, Environmental Effects of Polycyclic Aromatic Hydrocarbons. (2015)
[11] Capuzzo, J. M. and Lancaster, B. A.: (1985), ‘Zooplankton Population Responses to Industrial Wastes Discharged at Deepwater Dumpsite 106’, in D. R. Kester, R. C. Hittinger and P. Mukherji (eds.), Wastes in the Ocean, Vol. 5, Deep-sea waste disposal. J. Wiley and Sons, Inc., New York, N. Y.
[12] Fasulo, S., Guerriero, G., Cappello, S., Colasanti, M., Schettino, T., Leonzio, C., ... & Gornati, R. (2015). The “SYSTEMS BIOLOGY” in the study of xenobiotic effects on marine organisms for evaluation of the environmental health status: biotechnological applications for potential recovery strategies. Reviews in Environmental Science and Bio/Technology, 14(3), 339-345.
[13] Pereira WE, Domagalski JL, Hostettler FD, Brown LR, Rapp JB (1996) Occurrence and accumulation of pesticides and organic contaminants in river sediment, water, and clam tissues from the San Joaquin River and tributaries, California. Enviro Tox Chem, 15(2): 172 – 180.
[14] Beasley G, Kneale P (2002) Reviewing the impact of metals and PAHs on macroinvertebrates in urban watercourses. Prog Phys Geo, 26(2): 236 – 270.
[15] Farrington, J., Goldberg, E., Risebrough, R., Martin, J., & Bowen, V. (1983). U.S. "Mussel Watch" 1976-1978: an overview of the trace-metal, DDE, PCB, hydrocarbon and artificial radionuclide data. Environmental Science & Technology, 17(8), 490-496. doi: 10.1021/es00114a010.
[16] Jafarabadi, A. R., Bakhtiari, A. R., Yaghoobi, Z., Yap, C. K., Maisano, M., & Cappello, T. (2019). Distributions and compositional patterns of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in three edible fishes from Kharg coral Island, Persian Gulf, Iran. Chemosphere, 215, 835-845.
[17] Gewurtz, S. B., Lazar, R., & Douglas Haffner, G. (2000). Comparison of polycyclic aromatic hydrocarbon and polychlorinated biphenyl dynamics in benthic invertebrates of Lake Erie, USA. Environmental Toxicology and Chemistry: An International Journal, 19(12), 2943-2950.
[18] Bandowe, B. A. M., Bigalke, M., Boamah, L., Nyarko, E., Saalia, F. K., & Wilcke, W. (2014). Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. Environment international, 65, 135-146.
[19] Dsikowitzky, L., Nordhaus, I., Andarwulan, N., Irianto, H. E., Lioe, H. N., Ariyani, F., ... & Schwarzbauer, J. (2016). Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia. Marine pollution bulletin, 110(2), 767-777.
[20] Villeneuve, J. P., Carvalho, F. P., Fowler, S. W., & Cattini, C. (1999). Levels and trends of PCBs, chlorinated pesticides and petroleum hydrocarbons in mussels from the NW Mediterranean coast: comparison of concentrations in 1973/1974 and 1988/1989. Science of the Total Environment, 237, 57-65.‏
[21] UNRP/IOC/IAEA. (1989), ‘Determination of DDTs and PCBs in Selected Marine Organisms by Capillary Column Gas Chromatography, Reference Methods for Marine Pollution Studies No. 40 Nairobi’, United Nations Environment Program, 18.
[22] El-Sikaily, A., Khaled, A., El Nemr, A., Said, T. O., & Abd-Allah, A. M. A. (2002). Determination of hydrocarbons in Bivalves from the Egyptian Mediterranean coast. Mediterranean Marine Science, 3(2), 123-131.‏
[23] Brändli, R. C., Bucheli, T. D., Kupper, T., Mayer, J., Stadelmann, F. X., & Tarradellas, J. (2007). Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants. Environmental Pollution, 148(2), 520-528.
[24] Nasher, E., Heng, L. Y., Zakaria, Z., & Surif, S. (2013). Assessing the ecological risk of polycyclic aromatic hydrocarbons in sediments at Langkawi Island, Malaysia. The Scientific World Journal, 2013.
[25] Angulo-Cuero, J., Grassi, M., Dolatto, R., Palacio-Cortés, A., Rosero-Moreano, M., & Aristizábal, B. (2021). Impact of polycyclic aromatic hydrocarbons in mangroves from the Colombian pacific coast: Evaluation in sediments and bivalves. Marine Pollution Bulletin, 172, 112828. doi: 10.1016/j.marpolbul.2021.112828
[26] Elmamy, C. A. A., Abdellahi, B. M. L., Er-Raioui, H., Dartige, A., Zamel, M. L., & Deida, P. M. V. (2021). Hydrocarbon pollution in Atlantic coast of Mauritania (Levrier Bay Zone): Call for sustainable management. Marine pollution bulletin, 166, 112040.
[27] Fang, C., Bo, J., Zheng, R., Hong, F., Kuang, W., Jiang, Y., Chen, J., Zhang, Y., & Segner, H. (2020). Biomonitoring of aromatic hydrocarbons in clam Meretrix meretrix from an emerging urbanization area, and implications for human health. Ecotoxicology and environmental safety, 192, 110271.
[28] Miguel-Gallo, Y., Gómez-Batista, M., & Alonso-Hernández, C. M. (2019). Levels of Polycyclic Aromatic Hydrocarbons in Perna viridis, in Cienfuegos Bay, Cuba. Polycyclic Aromatic Compounds, 39(2), 139-147.
[29] Ma, L., Lu, Z. Q., Zhang, Y. B., Zhao, X., & Yang, S. Y. (2017). Distribution and sources apportionment of polycyclic aromatic hydrocarbons in the edible bivalves and sipunculida from coastal areas of Beibu Gulf, China. Applied Ecology and Environmental Research, 15(3), 1211-1225.