
 

 

 
Abstract—Generalised Zero-Shot Learning, often known as 

GZSL, is an advanced variant of zero-shot learning in which the 
samples in the unseen category may be either seen or unseen. GZSL 
methods typically have a bias towards the seen classes because they 
learn a model to perform recognition for both the seen and unseen 
classes using data samples from the seen classes. This frequently leads 
to the misclassification of data from the unseen classes into the seen 
classes, making the task of GZSL more challenging. In this work, we 
propose an approach leveraging the Shifted Window based Self-
Attention in the Swin Transformer (Swin-GZSL) to work in the 
inductive GZSL problem setting. We run experiments on three popular 
benchmark datasets: CUB, SUN, and AWA2, which are specifically 
used for ZSL and its other variants. The results show that our model 
based on Swin Transformer has achieved state-of-the-art harmonic 
mean for two datasets - AWA2 and SUN and near-state-of-the-art for 
the other dataset - CUB. More importantly, this technique has a linear 
computational complexity, which reduces training time significantly. 
We have also observed less bias than most of the existing GZSL 
models. 
 

Keywords—Generalised Zero-shot Learning, Inductive Learning, 
Shifted-Window Attention, Swin Transformer, Vision Transformer.  

I. INTRODUCTION 

ITH the help of Deep Learning, humanity has made 
significant progress in solving many problems related to 

AI. Significant advances in many tasks, especially visual 
recognition tasks, are not just due to the use of advanced deep 
learning architectures, but also due to the use of massive 
amounts of labelled datasets. While the advancements in deep 
learning architectures are admirable, dependence on huge 
volumes of data is sometimes problematic. On one hand, 
expecting to obtain readily available labelled datasets for each 
and every problem we attempt to solve is irrational and on the 
other hand, manually creating annotated datasets is also not 
practical because it not only requires human labour and domain 
expertise but also leads towards unrealistically attempting to 
annotate every kind of image that exists on the planet. If we 
consider a child who can learn to be able to distinguish between 
a cat and a dog using a single image of them, an AI system 
needs many images of those animals to be able to perform the 
same task with good accuracy. In response to external cues, 
humans are quick to grasp novel concepts and much quicker to 
identify variations of those concepts and recall them in different 
contexts.  

General Intelligence is defined as the capability to execute a 
range of objectives and complete a variety of activities in a 
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variety of scenarios and contexts [1]. Zero-Shot Learning (ZSL) 
is an attempt to achieve Artificial General Intelligence in AI 
systems to mimic human general intelligence so that these 
systems can be deployed in contextually different 
environments. ZSL is the process of leveraging semantic 
information (e.g., characteristics) to distinguish between seen 
and unseen samples when unseen classes are not observed 
during training. This is achieved by transferring semantic 
knowledge from seen classes to unseen classes. ZSL attempts 
to solve tasks where limited training data is available by 
learning novel classes using the semantic information available. 
With these methods, a model only needs to be trained once to 
acquire the capacity to generalize to new tasks with classes that 
are underrepresented in the training data. In ZSL, the semantic 
information of both seen and unseen classes are available to us 
but the images of seen classes are available for training. Using 
ZSL, we can only classify images from unseen classes or novel 
classes by leveraging prior knowledge and the semantic 
information present in the form of dimensional vectors. As 
mentioned earlier, the focus of this work is centred on Fine-
Grained Image classification using GZSL, in which test data 
can be from both seen and unseen classes, which is closer to 
real-time practical applications. Fine-grained classification can 
be defined as recognising classes that are visually very similar. 
This is an important yet challenging task with a wide range of 
applications from the fashion industry, e.g., recognition of 
different types of shoes or cloth, to face recognition and 
environmental conservation, e.g., recognizing endangered 
species of birds or plants [2]. 

In this work, we propose the use of Swin (shifted window) 
Transformer towards solving GZSL as an approach that 
achieves state-of-the-art results in a more efficient way. We 
compare our approach (Swin-GZSL) against the Vision 
Transformer-based approach [4], which is the current state-of-
the-art. 

II. BACKGROUND 

GZSL mainly suffers from two problems - Bias and Hubness. 
As explained above, GZSL methods are generally biased 
towards seen classes i.e., their performance on seen classes 
tends to be a lot better than that of unseen classes. In addition 
to this, GZSL methods tend to push the correct labels down their 
neighbour list, to the neighbour class with a high number of 
items. These feature vectors that have a high number of items 
mapped to them are called hubs and this is called the Hubness 
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problem [5] where instead of the class label with maximum 
similarity, its closest hub is returned as the predicted label. 
Various techniques based on attention, advanced post-
processing, feature de-correlation and hubness-repellent 
mapping can be used to solve these problems and achieve 
better-performing GZSL systems [6]-[8]. 

When deep learning architectures were not as prevalent, 
GZSL methods [9]-[11] were developed to learn a mapping 
between the semantic and visual space that enables the transfer 
of knowledge of semantic dimensional vectors from seen 
classes to unseen classes. The performance of these models was 
poor due to the fact that not only were the models simplistic, 
but they also relied on global characteristics. The performance 
of GZSL models, however, has been vastly enhanced by recent 
developments in the field of deep learning. Socher et al. [12] 
was the first to introduce the concept of GZSL in 2013, as 
discussed in [13]. Although many attempted to solve GZSL, it 
did not gain traction until 2016, when Chao et al. empirically 
showed that techniques under ZSL setting cannot perform well 
under the GZSL setting [50]. Most attempts to solve the GZSL 
task can be broadly categorised into two classes - Embedding 
based and Generative based methods as shown in Fig. 1 [13]. In 
order to link the low-level visual characteristics of observed 
classes with the appropriate semantic vectors, embedding-based 
approaches learn an embedding space. Generative-based 
methods learn a method for generating images for unseen 
classes from the semantic representations of both classes and 
visual features of seen classes thereby converting the GZSL 
problem into a conventional supervised learning problem [13]. 
As our proposed methodologies are Embedding-based, we 
perform research on a range of Embedding-based techniques 
and present them below. 

A. Embedding Based Methods 

GZSL models are trained using both visual features - 
containing only seen samples, and semantic features - 
containing both seen and unseen samples. In order to correlate 
the visual features of the viewed class to their corresponding 
semantic feature vectors, most ZSL methods use an embedding 
function. Upon optimisation, this function gains the ability to 
recognise new classes by comparing the embedding space 
representations of the prototype and the predicted. The 
embedding space is divided into three categories: semantic 
embedding, visual embedding, and latent space embedding. As 
opposed to semantic embedding, which performs classification 
in the semantic space by mapping attributes from the visual 
space to the semantic space (forward-projection), visual 
embedding performs classification in the visual space by 
mapping the semantic representations to the visual space 
(backward-projection). In order to discover cross-modal shared 
semantic characteristics, some works propose learning an 
intermediate space shared by the visual features and semantic 
features [11]-[13]. This is accomplished by projecting the visual 
and semantic features into a common Latent space L 
(intermediate projection). 

B. Early Approaches 

Deep Visual-Semantic Embedding, or DeViSe, is a model 
that was first developed in 2013 that is capable of recognising 
visual objects by making use of both labelled and semantic 
information [14]. This was one of the first methods that 
demonstrated that semantic information could be used to 
predict novel classes. Later, Convex combination of Semantic 
Embeddings (ConSe) was introduced in 2014, with the aim of 
building an embedding model from an already-existing image 
classifier and a semantic word embedding model that includes 
the n-class labels in its vocabulary [15]. This method does not 
require any extra training as it maps the images into the 
semantic embedding space using a complicated combination of 
class label embedding vectors [15]. Another important paper 
from 2015 presented methods to enhance ZSL by reducing the 
hubness problem through the use of the proximity distribution 
of possible neighbours across several mapped vectors and the 
substitution of globally adjusted closest neighbour queries [16].  

C. Auto Encoder Based Approaches 

In 2018, an approach to preserving the semantic relations in 
the embedding space with the help of objective functions that 
induce semanticity to the embedding space was proposed [28]. 
This approach focuses on effectively utilising the semantic 
space by introducing relations between classes based on the 
similarity of their semantic content. Another novel approach - 
Low-rank Embedded Semantic AutoEncoder - that leverages 
the low intrinsic dimensionality of data has been proposed 
which links visual features with their semantic representations 
using low-rank mappings [29]. While the encoder aims to learn 
the low rank mapping that links visual features to semantic 
space, the decoder’s task is to reconstruct the original data using 
the mapping that the encoder learns [29]. Furthermore, 
techniques like Meta Learning [22]-[24], Knowledge Graphs 
[25]-[27], and Bi-directional Learning [30], [31] that utilise 
cutting-edge techniques in diverse contexts have been proposed 
to enhance GZSL task. 

D. Recent Approaches 

To produce semantically relevant representations for images, 
in 2018, a Stacked Semantic Directed Attention Model that 
progressively assigns weights for distinct regional features 
based on semantic descriptions has been suggested [17]. A 
framework using Latent Feature Guided Attribute Attention has 
also been proposed which uses both global class-level features 
and low-level visual information to perform object-based 
attribute attention for semantic disambiguation, where attention 
is used to integrate both low-level and global features from 
semantic space [18]. Goal-Oriented Gaze Estimation is another 
unique approach that uses visual attention by predicting the 
human gaze location using semantic query-guided attention to 
identify unseen class objects [19]. Leveraging both attention 
and transformers, approaches like [4], [20] and [21] have been 
proposed very recently to solve the GZSL task. 
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Fig. 1 The taxonomy of GZSL models [13] 
 

III.  OBJECTIVES 

Even the state-of-the-art methods used to solve the problem 
of GZSL are seen to exhibit high amounts of bias in their 
results. Models tend to recognise images from seen classes with 
far better accuracy than images from unseen classes. Our 
primary objective is to build a GZSL model to bridge the gap in 
performance across seen and unseen classes, that is able to 
generalise well on unseen data i.e., show less bias in its 
performance at the same time performing similar to or better 
than the existing state-of-the-art models. Moreover, the current 
state-of-the-art technique has quadratic computational 
complexity which makes it quite time-consuming during the 
training process. Our secondary objective is to reduce this 
computational complexity as much as possible. In order to 
achieve these objectives, we use the Swin Transformers with 
Shifted window based Self Attention. As Swin-Transformer 
based approaches have shown to outperform the Vision 
Transformer (ViT) model in terms of semantic segmentation 
and COCO object recognition [32], we wanted to implement it 
in the ZSL setting and measure its performance. We build a 
deep learning classifier implementing the Swin architecture in 
order to see the effectiveness of them in solving the GSZL. We 
perform experiments on the three benchmark datasets: Animals 
with Attrubites2 (AWA2), Caltech-UCSD-Birds (CUB) and 
SUN. 

IV. PROPOSED APPROACH 

A. Architecture Overview 

Swin Transformer is a novel transformer design developed in 
2021 by researchers at Microsoft and is published by Liu et al. 
in the paper "Swin Transformer: Hierarchical Vision 
Transformer using Shifted Windows" that can effectively serve 
as a general-purpose backbone for computer vision applications 
[32]. "Swin" basically stands for Shifted Windows, implying 
that Swin Transformer essentially is a hierarchical Transformer 
that uses Shifted Windows to compute image feature 
representations by combining image patches in deeper layers. 
The shifted windowing technique improves performance by 
enabling cross-window connectivity while restricting self-
attention computation to non-overlapping local windows. This 
also means that the computational complexity of the Swin 
transformer is linear to the input image size while the other 
vision transformers have a quadratic computational complexity 
to input size [33], as the attention module is only computed 
within local windows, unlike other vision transformers where it 
is computed globally. 

 

Fig. 2 Hierarchical feature mapping of Swin and ViT architectures 
[32] 

 
As seen in Fig. 2, the swin transformer generates a 

hierarchical representation of the image by beginning with 
relatively tiny portions/patches of the image, then gradually 
merging adjacent patches to generate larger patches as the 
transformer layers become deeper. Because the number of 
patches inside each window is fixed throughout the architecture 
regardless of the depth of layers, the complexity of this 
approach will always be proportional to the image size. 

B. Shifted Window Based Attention Module 

 

Fig. 3 Shifted-Window method to compute self-attention [32] 
 

One of the important design elements of the Swin 
Transformer is the scheme of shifting the window partition 
between consecutive self-attention layers (Fig. 3). Shifted 
windows is not entirely a novel idea - it is something that is an 
essential part of Convolutional Neural Networks (CNN) which 
has made CNN so powerful and accurate. But, as far as 
transformers are concerned, Swin is the first architecture to 
implement the this. The shifting of the window partition that 
occurs between consecutive self-attention layers is one of the 
essential components of the design of the Swin Transformer. 
Shifting windows allows us to partition the images into distinct 
patches in which we can bridge the windows of the previous 
layer, enabling connections between windows and increasing 
modelling capabilities. Unlike sliding-window-based self-
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attention methods, which are troubled by latency, shifted-
window methods have significantly less latency while retaining 
high modelling capacity. 

A window-based self-attention module’s modelling capacity 
is limited because there is no information transfer between 
windows. To address this, the Swin architecture proposes 
shifted-windows based self-attention, which enables cross-
window communication. Unlike a normal Vision Transformer 
where attention is fixed on certain regions, in Swin, the 
attention window keeps shifting with respect to the previous 
layer, just like in a strided convolution. Patches that were 
bounded by different windows in a layer cannot communicate 
in that layer, although they are adjacent. But Swin facilitates 
communication in the next layer or deeper layers. Each 
transformer, as depicted Fig. 3, contains two modules. In the 
first module, partitioning begins at the top-left pixel and it 
evenly divides the 8 8 feature map into four windows of 
2 2 size each. In the next module, the window partitioning is 

displaced by (⌊ ⌋, ⌊ ⌋) pixels, relative to the previous module. 

Consecutive Swin Transformer blocks in this shifted window 
approach are calculated as follows [32]: 

 

�̂� 𝑊 𝑀𝑆𝐴 𝐿𝑁 �̂� �̂�  
 

�̂� 𝑀𝐿𝑃 𝐿𝑁 �̂� �̂�  
 

�̂� 𝑆𝑊 𝑀𝑆𝐴 𝐿𝑁 �̂� �̂�  
 

                �̂� 𝑀𝑃𝐿 𝐿𝑁 �̂� �̂�                (1) 
 
where 𝑧  is the MLP module for block 𝑙; �̂�  is the output features 
generated by the shifted window module (SW-MSA); W-MSA 
stands for self-attention calculated using regular window 
partitioning; SM-MSA stands for self-attention calculated using 
shifted window. partitioning. A general Vision Transformer 
[33] has the standard multi-head self-attention (MSA) whereas 
the Swin transformer block (Fig. 4) has the shifted window-
based attention module (SW-MSA) replacing MSA. All the 
other layers between these two architectures remain the same. 
The MSA and SW-MSA modules are connected to a 2-layer 
MLP with GELU non-linearity function in between them, 
before finally connecting to a dropout layer in the MLP [32]. 
Layer Normalization is applied after each stage i.e., before 
MSA and MLP modules, in each of the individual units in 
block. 

Within MSA and SW-MSA, self-attention is calculated for 
all the patches in patch embeddings separately. Query(Q), 
Key(K) and Value(V) are created by multiplying the patch 
embeddings by three weight matrices trained during the training 
process to calculate self-attention [4]. The dot product of Q and 
K is calculated which results in the attention intensity matrix 
which describes the amount of attention a patch embedding has 
to dedicate to other embeddings. Finally, a softmax function is 
applied to the score matrix and then multiplied by values, as 
shown in [34]: 

 

  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑉      (2) 

 
where Q, K, and V are Query, Key and Value; 𝑑  is the number 
of dimensions of the Key Vector; V is the value vectors [32]. 
 

 

Fig. 4 Two Successive Swin Transformer Blocks with Multihead 
attention and Shifted Window Attention [32] 

 
Many embedding based approaches learn an embedding 

space between the global visual features and semantic 
representations. But the main focus of Attention based 
approaches is to learn the most important regions of an image 
that provide maximum discriminative features. So, the task of 
visual attention is to divide an image I into R regions denoted 
by 𝐼 , which can be either equal-sized or arbitrary grids 
and generate features from the most relevant regions of the 
image [3]. Given region features 𝑓 , the goal of the 
attention module g(.) is to find the most relevant regions for the 
specific task at hand [3]. This is done by finding an attention 
feature, f, which is defined by [3]: 

 
                𝑓 𝑔 𝑓 , . . . , 𝑓 ∑ 𝛼 𝑓 𝑓         (3) 

V. EXPERIMENT DESIGN 

A. Implementation Details 

Swin-L, a large variant of Swin, has been implemented using 
PyTorch. Image size of 224 * 224 is used, and no data 
augmentations have been performed on the dataset. The input 
patch size is 4 * 4 with 192 connections in each of the fully 
connected layers. This architecture contains 564 attention heads 
across all four stages of the Transformer Block - 12, 24, 432, 96 
heads respectively in each stage. The window size of all 
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attention modules is considered to be 7 * 7. On the whole, this 
architecture comprises of 197M parameters, and we used Adam 
optimizer to fine-tune the model with a weight decay of 0.05, 
learning rate of 0.0001 and batch size of 64. The architecture 

has been implemented in PyTorch using the cloud platform - 
Gradient Paperspace, using A-6000 with 48GB GPU and 45GB 
RAM. 

 

 

Fig. 5 Swin Transformer Architecture for GZSL (proposed approach) 
 

TABLE I 
SUMMARY OF DATASETS 

Attribute AwA2 CUB SUN 

#Total 37,322 11,788 14,340 

#Classes 50 200 717 

#Attribute Length 85 312 102 

#Seen Classes 40 50 645 

#Unseen Classes 10 50 72 

#Train Images 23,527 7,057 10,320 

#Validation Images 5882 1,764 2,580 

#Test Images 7,913 2,967 1,440 

B. Datasets 

We have used the datasets mentioned below for the purposes 
of training, validating, and testing our model. These datasets are 
freely available public benchmarks that have been utilized to 
evaluate ZSL and GZSL for many years. Therefore, data 
privacy is not an issue. To evaluate our model, we conduct 
experiments on the following datasets. 
1. CUB: Caltech-UCSD-Birds [48] is a fine-grained image 

dataset that contains images from 150 seen classes and 50 
unseen classes. This dataset contains images of 200 birds 
belonging to 200 classes with a total of 11,788 images. 
Each class is represented using a continuous semantic 
vector of 312 dimensions. This dataset includes attribute 
location annotations, which will make it easier to locate 
objects by utilizing small discriminative regions. Our 
technique is weakly supervised method and does not 
require location annotations, hence we do not use these 
labels. 

2. SUN: SUN [47] is a dataset that contains 14,340 images 
with a total of 645 seen classes and 72 unseen classes. It 
contains the most classes among all the 3 datasets with each 
class containing a 102D continuous semantic vector. 

3. AWA2: Animals with Attributes [41] is a dataset of animal 
images with 37,322 images. It has 40 seen and 10 unseen 
classes in total and an 85D semantic vector associated with 
each class. 

In [48], Xian et al. propose a new way to split all the above 

three datasets ensuring that none of the test classes appear in the 
ImageNet 1K dataset, to ensure no data leakage. This helps us 
to evaluate accurately not only the performance of the model 
but also the generalization capability of the model. We partition 
the datasets based on these proposed splits for the purposes of 
training and testing our model. 

C. Evaluation Metrics 

We use Harmonic Mean as the assessment metric in order to 
assess the performance of models and contrast them with 
current techniques. The accuracy of the model on seen class and 
unseen class is calculated separately and the harmonic mean of 
these values is considered as the final accuracy. Nevertheless, 
we do report seen class and unseen class accuracy along with 
the harmonic mean so that further inferences can be drawn. Per-
class accuracy (𝐴𝑐𝑐 ) of both seen and unseen classes is 
calculated as: 

 

                       𝐴𝑐𝑐 ∑ 𝐴| | 𝑐𝑐          (4) 

 
where the accuracy of the model 𝐴𝑐𝑐  on test samples of class 
𝐶  is calculated using the formula: 
 

                   𝐴𝑐𝑐

#

| |
         (5) 

 
Average accuracy on all classes is considered the final per-

class accuracy of the model. To calculate the harmonic mean, 
we first calculate accuracy on unseen classes, denoted as 
𝐺𝑍𝑆𝐿 , using (5). Similarly, we calculate seen class accuracy, 
denoted as 𝐺𝑍𝑆𝐿 . Harmonic Mean, which is the final accuracy, 
denoted as 𝐺𝑍𝑆𝐿 , is calculated using the formula: 

 

                𝐺𝑍𝑆𝐿       (6) 

 
Additionally, we used calibration stacking to assess these 
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techniques, where the calibration value depends on the dataset. 

VI. RESULTS 

In Table II, we produce the performance of Swin-GZSL on 
Generalised Zero shot classification on the three selected 
datasets. Because this is "generalised", images from both 
unseen classes and seen classes can be seen during the testing. 
Along with the performance of Swin-GZSL, these results 
showcase the performance of some of the earliest approaches 
that tried to solve GZSL, along with some other well-known, 
and recent approaches. We compare our results against the 
results of ViT-ZSL, which is the state-of-the-art method at the 
time of writing this paper. 

Swin-GZSL has achieved a better harmonic mean than the 
current state-of-the-art, ViT-ZSL, on AWA2 and SUN datasets. 
It also performed well and achieved near state-of-the-art 
accuracy on the CUB dataset. Compared to ViT-ZSL, the 
accuracy of Swin-GZSL is a little less on seen classes, but the 
Unseen accuracy of Swin is greater than that of ViT on all three 
datasets. This essentially means that we have improved the 
generalisation capacity of the model and reduced the bias, 
although not completely eliminated it. 

VII. CRITICAL DISCUSSION 

Swin-GZSL is better suited to solve the GZSL than ViT-
ZSL, the current state-of-the-art, because of multiple reasons: 
4. It achieved state-of-the-art harmonic mean accuracy of 

seen and unseen class data on two datasets, and it achieved 
near state-of-the-art on the third dataset - 1% difference 

5. Swin-GZSL demonstrates better generalisation and less 
bias. When compared to ViT-ZSL, it has the advantage of 
being superior at recognising unseen class data, making it 
a better choice for real-world use cases. 

6. The computational time of Swin-GZSL is less compared to 
that of ViT-ZSL. As ViT-ZSL computes attention globally, 
the computational complexity of ViT-ZSL is Quadratic i.e., 
the computational time increases quadratically with respect 
to the image. In contrast, the shifted windowing scheme 
used in Swin-GZSL brings greater efficiency by limiting 
self-attention computation to non-overlapping local 
windows while also allowing for cross-window connection 
[32]. Hence, the computational complexity of Swin-GZSL 
grows linearly with respect to image making this a better 
choice both in terms of speed and accuracy. 

Vision Transformers partition an input image into distinct, 
uniformly sized patches and processes those patches 
independently. Because of this, it is possible that information at 
the boundaries of the patch will be lost, which will cause them 
to perform poorly on tasks that involve a fine-grained 
evaluation of the pixels inside patches. This issue does not arise 
in Swin Transformer because Swin does not process patches 
independently. To understand how computing local attention 
instead of global attention causes such a significant difference 
in computational complexity when compared to a Vision 
transformer, let’s look at how a Swin Transformer operates. 

A. Computational Complexity  

Let us consider that a standard RBG image of size 
224 224, across 3 channels is sent as input to Swin-GZSL. 
This image is now segmented into 4 4 size patches resulting 
in 48 pixels per patch. In Swin-GZSL, we have used a large 
variant of the Swin transformer which has a linear embedding 
of size 192, which means that each patch will be represented in 
by an embedding vector of length 192, resulting in 3,136 
patches. Each image is broken into non-overlapping windows 
such that each window contains 𝑀 𝑀 patches, which in our 
case is 7 7. This results in the entire image getting divided 
into 64 windows with 49 patches in each window. Here is where 
local Attention comes into picture - Attention is only calculated 
using those 49 patches within a window. This computation of 
local attention does not take into account any other patches that 
are located beyond the boundaries of the window in which this 
patch is located. This means that only 2401 49 49  dot 
products will be calculated per patch. As the number of patches 
is fixed, the computational complexity becomes linear to image 
size. For a sequence of length N and window size M, the 
complexity of local attention would be 𝑂 𝑀 𝑁  while the 
complexity of global attention would be 𝑂 𝑁 ). 

Separately, from our experiments using the machine A-6000 
with 48GB GPU and 45GB RAM, we have found that the time 
taken to train Swin-GZSL is significantly less than that of ViT-
ZSL. While ViT-ZSL needs to be trained for 80 epochs to be 
able to reach the state-of-the-art performance, Swin-GZSL 
needs only 15-20 epochs of training to be able to achieve similar 
levels of performance. To put this into perspective, for a total 
training that spans over epochs, ViT-ZSL takes approximately 
6.5 hours on CUB and SUN datasets and 8.5 hours on AWA2 
dataset. In contrast, Swin-ZSL takes < 15 minutes on CUB and 
SUN datasets and < 25 minutes on AWA2 dataset. This 
difference in the number of epochs makes a huge impact 
because their computational complexities are also different as 
explained above. 

In [32], the authors perform a comparative analysis on the 
speed-accuracy trade-off of classification task of Vision 
Transformer and Swin Transformer, which is shown in Table 
III. All the backbones were pre-trained on ImageNet-22K 
dataset and performance was evaluated on ImageNet-1K. The 
Swin backbones perform better than their Vision Transformer 
while computing less floating-point operations per second. 
From this, we can infer the difference in computational 
requirements of both architectures. Both Base and Large 
variants of Swin outperform their counterparts in Vision 
Transformer. Another important difference between ViT-ZSL 
and Swin-GZSL is that ViT-ZSL completely abandons biases 
that make it translation invariant. They are not designed to look 
for translation invariance but instead to learn these inductive 
biases through the training process. But Swin-GZSL, on the 
other hand, uses a relative position bias when computing 
attention that preserves certain translation invariant features 
[32]. This is also why ViT-ZSL needs to be trained longer to 
start performing well as it has to learn on its own that these 
features are important. 
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TABLE II 
QUANTITATIVE RESULTS: GZSL PERFORMANCE OF VARIOUS METHODS ON THE DATASETS AWA2, CUB AND SUN 

Models 
 AWA2   CUB   SUN  

S U H S U H S U H 

ConSE [45] 90.60 0.5 0.99 72.20 1.60 3.13 39.90 6.80 11.60 

SSE [35] 82.50 8.10 14.80 46.90 8.50 14.40 36.40 2.10 4.00 

LATEM [39] 77.30 11.50 20.00 57.30 15.20 24.00 28.80 14.70 19.50 

ALE [9] 81.80 14.00 23.91 62.80 23.70 34.41 33.10 21.80 26.30 

GAZSL [44] 86.50 19.20 31.42 60.60 23.90 34.28 35.70 21.70 26.70 

SELAR [36] 78.70 32.90 46.40 76.30 43.00 55.00 37.20 23.80 29.00 

f-CLSWGAN [43] 64.40 57.90 59.60 57.70 43.70 49.73 36.60 42.60 39.37 

IIR [42] 83.20 48.50 61.30 52.30 55.80 53.00 30.40 47.90 36.80 

AREN [38] 79.10 54.70 64.68 63.20 69.00 65.97 40.30 32.30 35.90 

f-VAEGAN-D2 [40] 76.10 57.10 65.24 75.60 63.20 68.85 50.10 37.80 43.10 

APN [37] 78.00 56.50 65.50 69.30 65.30 67.20 34.00 41.10 37.60 

DAZLE (Official) [2] 75.70 60.30 67.13 59.60 56.70 58.10 24.30 52.30 33.20 

CADA-VAE [3] 75.00 55.80 63.99 53.50 51.60 52.53 35.70 47.20 40.65 

ViT-ZSL [2] 90.00 51.90 65.84 75.20 67.30 71.03 55.30 44.50 49.32 

Swin-GZSL (Our Proposed Method) 82.43 59.69 69.24 71.93 68.78 70.32 53.19 46.52 49.63 

S and U denote the accuracy of the models on Seen classes and Unseen classes respectively. H denotes the harmonic mean of both Seen and Unseen classes (S 
and H) 

 

VIII. CONCLUSION 

In this paper, we proposed an approach - Shifted Window 
Attention via Swin Transformer - to solve the GZSL problem 
to identify and classify images. Our approach uses the shifted-
window based attention module for relating visual and semantic 
attributes. For linking visual and semantic features, our unique 
technique utilizes a shifted-window-based attention module. 
Our results on the datasets AWA2 and SUN datasets show that 
we achieved the state-of-the-art in terms of harmonic mean and 
on AWA2 and SUN datasets. On CUB dataset, we achieved 
near-state-of-the-art accuracy. Additionally, Swin-GZSL also 
demonstrated reduced bias due to its superior capacity to 
generalise and perform better on unseen classes. Not only does 
our model perform better but it also is computationally less 
expensive.  

Even though the model attained state-of-the-art results, the 
harmonic mean accuracy of the model on unseen classes of two 
datasets is just around 50%. Although the bias is reduced, it is 
far from being completely eliminated. Building ensemble 
models that leverage the capabilities of both generative and 
embedding learning is something that can be explored upon, to 
reduce bias. Attempts to overcome the issue using meta-
learning techniques are also promising directions that can be 
focused upon. 
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