In-situ LDH Formation of Sodium Aluminate Activated Slag
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
In-situ LDH Formation of Sodium Aluminate Activated Slag

Authors: Tao Liu, Qingliang Yu, H. J. H. Brouwers

Abstract:

Among the reaction products in the alkali activated ground granulated blast furnace slag (AAS), the layered double hydroxides (LDHs) have a remarkable capacity of chloride and heavy metal ions absorption. The promotion of LDH phases in the AAS matrix can increase chloride resistance. The objective of this study is that using the different dosages of sodium aluminate to activate slag, consequently, promoting the formation of in-situ LDH. The hydration kinetics of the sodium aluminate activated slag (SAAS) was tested by the isothermal calorimetry. Meanwhile, the reaction products were determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The sodium hydroxide activated slag is selected as the reference. The results of XRD, TGA, and FTIR showed that the formation of LDH in SAAS is governed by the aluminate dosages.

Keywords: ground granulated blast furnace slag, sodium aluminate activated slag, in-situ LDH formation, chloride absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496

References:


[1] J. Zhang, C. Shi, Z. Zhang, Z. Ou, Durability of alkali-activated materials in aggressive environments: A review on recent studies, Constr. Build. Mater. 152 (2017) 598–613. doi:10.1016/j.conbuildmat.2017.07.027.
[2] J. Osio-Norgaard, J. P. Gevaudan, W. V. Srubar, A review of chloride transport in alkali-activated cement paste, mortar, and concrete, Constr. Build. Mater. 186 (2018) 191–206. doi:10.1016/j.conbuildmat.2018.07.119.
[3] P. Chen, B. Ma, H. Tan, X. Liu, T. Zhang, C. Li, Q. Yang, Z. Luo, Utilization of barium slag to improve chloride-binding ability of cement-based material, J. Clean. Prod. 283 (2021). doi:10.1016/j.jclepro.2020.124612.
[4] T. Yang, Z. Zhang, F. Zhang, Y. Gao, Q. Wu, Chloride and heavy metal binding capacities of hydrotalcite-like phases formed in greener one-part sodium carbonate-activated slag cements, J. Clean. Prod. 253 (2020). doi:10.1016/j.jclepro.2020.120047.
[5] T. Liu, Y. Chen, Q. Yu, J. Fan, H. J. H. Brouwers, Effect of MgO, Mg-Al-NO3 LDH and calcined LDH-CO3 on chloride resistance of alkali activated fly ash and slag blends, Constr. Build. Mater. 250 (2020). doi:10.1016/j.conbuildmat.2020.118865.
[6] T. Liu, Q. Yu, H. J. H. Brouwers, In-situ formation of layered double hydroxides (LDHs) in sodium aluminate activated slag: The role of Al-O tetrahedra, Cem. Concr. Res. 153 (2022) 106697. doi:10.1016/j.cemconres.2021.106697.
[7] A. A. Ramezanianpour, V. M. Malhotra, Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume, Cem. Concr. Compos. 17 (1995) 125–133. doi:10.1016/0958-9465(95)00005-W.
[8] Z. Zhang, Y. Zhu, H. Zhu, Y. Zhang, J. L. Provis, H. Wang, Effect of drying procedures on pore structure and phase evolution of alkali-activated cements, Cem. Concr. Compos. 96 (2019) 194–203. doi:10.1016/j.cemconcomp.2018.12.003.
[9] C. Forano, U. Costantino, V. Prévot, C. T. Gueho, Layered double hydroxides (LDH), Dev. Clay Sci. 5 (2013) 745–782. doi:10.1016/B978-0-08-098258-8.00025-0.
[10] T. Liu, Y. Chen, Q. Yu, J. Fan, H. J. H. Brouwers, Effect of MgO, Mg-Al-NO3 LDH and Calcined LDH-CO3 on chloride resistance of alkali activated fly ash and slag blends, Constr. Build. Mater. 250 (2020) 118865. doi:10.1016/j.conbuildmat.2020.118865.
[11] J. Yliniemi, B. Walkley, J. L. Provis, P. Kinnunen, M. Illikainen, Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools, J. Therm. Anal. Calorim. 144 (2021) 1129–1138. doi:10.1007/s10973-020-09651-6.
[12] EN 196-1, En 196-1, (2005) 1–33.
[13] BS EN 12457-2, Characterisation of Waste - Leaching - Compliance Test for Leaching of Granular Waste Materials and Sludges - Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction), BSI Stand. Publ. 3 (2014) 30.
[14] X. Gao, Q.L. Yu, A. Lazaro, H. J. H. Brouwers, Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: Reaction kinetics, gel structure and carbon footprint, Cem. Concr. Res. 100 (2017) 129–139. doi:10.1016/j.cemconres.2017.06.007.
[15] Z. Shi, B. Ma, B. Lothenbach, Effect of Al on the formation and structure of alkali-silica reaction products, Cem. Concr. Res. 140 (2021). doi:10.1016/j.cemconres.2020.106311.
[16] O. Burciaga-Díaz, I. Betancourt-Castillo, Characterization of novel blast-furnace slag cement pastes and mortars activated with a reactive mixture of MgO-NaOH, Cem. Concr. Res. 105 (2018) 54–63. doi:10.1016/j.cemconres.2018.01.002.
[17] S. Berger, C. C. D. Coumes, P. Le Bescop, D. Damidot, Influence of a thermal cycle at early age on the hydration of calcium sulphoaluminate cements with variable gypsum contents, Cem. Concr. Res. 41 (2011) 149–160. doi:10.1016/j.cemconres.2010.10.001.
[18] N. M. Musyoka, L. F. Petrik, E. Hums, A. Kuhnt, W. Schwieger, Thermal stability studies of zeolites A and X synthesized from South African coal fly ash, Res. Chem. Intermed. 41 (2015) 575–582. doi:10.1007/s11164-013-1211-3.
[19] E. R. McCaslin, C. E. White, A parametric study of accelerated carbonation in alkali-activated slag, Cem. Concr. Res. 145 (2021). doi:10.1016/j.cemconres.2021.106454.