Biotransformation of Monoterpenes by Whole Cells of Eleven Praxelis clematidea-Derived Endophytic Fungi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32870
Biotransformation of Monoterpenes by Whole Cells of Eleven Praxelis clematidea-Derived Endophytic Fungi

Authors: Daomao Yang, Qizhi Wang


Monoterpenoids are mainly found in plant essential oils and they are ideal substrates for biotransformation into oxygen-containing derivatives with important commercial value due to their low price and simple structure. In this paper, eleven strains of endophytic fungi from Praxelis clematidea were used as test strains to conduct the whole cell biotransformation of the monoterpenoids: (+)-limonene, (-)-limonene and myrcene. The fungi were inoculated in 50 ml Sabouraud medium and incubated at 30 ℃ with the agitation of 150 r/min for 6 d, and then 0.5% (v/v) substrates were added into the medium and biotransformed for further 3 d. Afterwards the cultures were filtered, and extracted using equal volume of ethyl acetate. The metabolites were analyzed by GC-MS technique with NIST database. The Total Ion Chromatogram of the extractions from the eleven strains showed that the main product of (+)- and (-)-limonene biotransformation was limonene-1,2-diol, while it is limonene and linalool oxide for biotransformation of myrcene. This work will help screen the microorganisms to biotransform the monoterpenes.

Keywords: Endophytic fungi, (+)–limonene, (-)–limonene, myrcene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592


[1] R.-S. Xu, Y. Ye, W.-M. Zhao, “Natural Product Chemistry,” 2nd ed., Science Press, 2004, pp. 166-193.
[2] W.-A. Duetz, H. Bouwmeester, J. B. Van Beilen, B. Witholt, B, “Biotransformation of limonene by bacteria, fungi, yeasts, and plants,” Applied Microbiology and Biotechnology, 2003, 61(4): 269-277.
[3] K. A. C. Vespermann, B. N. Paulino, M. C. S. Barcelos, M. G. Pessoa, G. M. Pastore, G. Molina, “Biotransformation of α- and β-pinene into flavor compounds,” Applied Microbiology and Biotechnology, 2017, 101(5): 1805-1817.
[4] C. C. De Carvalho, M. M. Da Fonseca, “Biotransformation of terpenes,” Biotechnology Advance, 2006, 24(2): 134-42.
[5] R. S. Dhavalikar, P. K. Bhattacharyya, “Microbiological transformations of terpenes. Viii. Fermentation of limonene by a soil pseudomonad,” Indian Journal of Biochemistry, 1966, 3(3): 144- 157.
[6] R. S. Dhavalikar, P. N. Rangachari, P. K. Bhattacharyya, “Microbiological transformations of terpenes. IX. Pathways of degradation of limonene in a soil pseudomonad,” Indian Journal of Biochemistry, 1966, 3(3): 158-164.
[7] N. Allouche, A. Damak, R. Ellouz, S. Sayadi, “Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol,” Applied and Environmental Microbiology, 2004, 70(4): 2105-2109.
[8] Brooks, S J, Doyle E A, O'Connor K E, Tyrosol to hydroxytyrosol biotransformation by immobilised cell extracts of Pseudomonas putida F6
[J]. Enzyme and Microbial Technology, 2006, 39(2): 191-196.
[9] Z. Bouallagui, S. Sayadi, “Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells,” Journal of Agricultural and Food Chemistry, 2006, 54(26): 9906-9911.
[10] A. Esmaeili, E. Hashemi, “Biotransformation of myrcene by Pseudomonas aeruginosa,” Chemistry Central Journal, 2011, 5:26-32.
[11] P. Fontanille, A. Le Fleche, C. Larroche, “Pseudomonas rhodesiae Pf1: A new and efficient biocatalyst for production of isonovalal from α-pinene oxide,” Biocatalysis and Biotransformation, 2002, 20(6): 413-421.
[12] G. Speelmans, A. Bijlsma, G. Eggink, “Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain,” Applied Microbiology and Biotechnology, 1998, 50: 538-544.
[13] M. A. Mirata, D. Heerd, J. Schrader, “Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264,” Process Biochemistry, 2009, 44(7): 764-771.
[14] G. Molina, M. R. Pimentel, G. M. Pastore, “Pseudomonas: A promising biocatalyst for the bioconversion of terpenes,” Applied Microbiology and Biotechnology, 2013, 97(5): 1851-1864.
[15] G. Molina, R. L. D. Costa, A. P. Dion Sio, L. B. Juliano, M. P. Gláucia, “Biotransformation of R-(+)- and S-(‒)-limonene by Fusarium oxysporum,” 2011.
[16] J. L. Bicas, F. F. C. Barros, R. Wagner R, H. T. Godoy, G. M. Pastore, “Optimization of R-(+)-α -terpineol production by the biotransformation of R-(+)-limonene,”Journal of Industrial Microbiology & Biotechnology, 2008, 35(9): 1061-1070.
[17] J. L. Bicas, C. Pereira De Quadros, I. A. Neri-Numa, et al. “Integrated process for co-production of alkaline lipase and R-(+)-α-terpineol by Fusarium oxysporum,” Food Chemistry, 2010, 120(2): 452-456.
[18] Y.-N. Tai, M. Xu, J.-N. Ren, M. Dong, Z.-Y. Yang, S.-Y. Pan, et al, “Optimisation of α-terpineol production by limonene biotransformation using Penicillium digitatum DSM 62840,” Journal of the Science of Food and Agriculture. 2016, 96(3): 954-961.
[19] A. Adams, J. C. R. Demyttenaere, N. De Kimpe, “Biotransformation of (R)-(+)- and (S)-(-)-limonene to α-terpineol by Penicillium digitatum- investigation of the culture conditions,” Food Chemistry, 2002, 80(4): 525-534.
[20] Q. Tan, D. F. Day, K. R. Cadwallader, “Bioconversion of (R)-(+)-limonene by P-digitatum (NRRL 1202),” Process Biochemistry. 1998, 33(1): 29-37.
[21] A. Z. M. Badee, S. A. Helmy, N. F. S. Morsy, “Utilisation of orange peel in the production of α-terpineol by Penicillium digitatum (NRRL 1202),” Food Chemistry, 2011, 126(3): 849-854.
[22] M. Pescheck, M. A. Mirata, B. Brauer, U. Krings, R. G. Berger, J. Schrader, “Improved monoterpene biotransformation with Penicillium sp. By use of a closed gas loop bioreactor,” Journal of Industrial Microbiology & Biotechnology, 2009, 36(6): 827-36.
[23] E. Vanrensburg, N. Moleleki, J. P. Vanderwalt, P. J. Botes, M. S. vanDyk, “Biotransformation of (+)limonene and (-)piperitone by yeasts and yeast-like fungi,” Biotechnology Letters, 1997, 19(8): 779-782.
[24] M. A. Ferrara, D. S. Almeida, A. C. Siani, L. Lucchetti, P. S. B. Lacerda, A. Freitas, et al, “Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica”. Brazilian Journal of Microbiology, 2013, 44(4): 1075-1080.
[25] J. C. R. Demyttenaere, H. M. Willemen, “Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger,” Phychemistry, 1997, 47(6): 1029-1036.
[26] J. C. R. Demyttenaere, A. Adams, J. Vanoverschelde, N. De Kimpe, “Biotransformation of (S)-(+)-linalool by Aspergillus niger: An investigation of the culture conditions,” Journal of Agricultural and Food Chemistry, 2001, 49(12): 5895-5901.
[27] I. Rottava I, G. Toniazzo, P. F. Cortina, E. Martello, C. E. Grando, L. A. Lerin, et al, “Screening of microorganisms for bioconversion of (-)β-pinene and R-(+)-limonene to α-terpineol,” Lwt-Food Science and Technology, 2010, 43(7): 1128-1131.
[28] H. F. Rozenbaum, M. L. Patitucci, O. A. C. Antunes, N. Pereira, “Production of aromas and fragrances through microbial oxidation of monoterpenes,”. Brazilian Journal of Chemical Engineering, 2006, 23(3): 273-279.
[29] J. C. R. Demyttenaere, J. Vanoverschelde, N. De Kimpe, “Biotransformation of (R)-(+)- and (S)-(-)-citronellol by Aspergillus sp and Penicillium sp., and the use of solid-phase microextraction for screening,” Journal of Chromatography A, 2004, 1027(1-2): 137-146.
[30] I. A. Parshikov, J. B. Sutherland, “The use of Aspergillus niger cultures for biotransformation of terpenoids,”. Process Biochemistry, 2014, 49(12): 2086-2100.
[31] P. Rodriguez, D. Gonzalez, S. Rodr Guez Giordano, “Endophytic microorganisms: A source of potentially useful biocatalysts,” Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S569-S581.
[32] H. C. R. De Jesus, A. H. Jeller, H. M. Debonsi, P. B. Alves, A. L. M. Porto, “Multiple monohydroxylation products from rac-camphor by marine fungus Botryosphaeria sp isolated from marine alga Bostrychia radicans,” Journal of Brazil Chemical Society, 2017, 28(3): 498-504.
[33] M. C. Bier, A. B. Medeiros, C. R. Soccol, “Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media,” Fungal Biolology, 2017, 121(2): 137-144.
[34] W. Wang, Study on the toxicity of secondary metabolites of endophytic fungi from invasive plants Praxelis clematidea to Diaphorina citri,”. Huaqiao University, 2019.
[35] B. B. Mukherjee, G. Kraidman, I. D. Hill, “Synthesis of glycols by microbial transformation of some monocyclic terpenes,” Applied Microbiology, 1973, 25(3): 447-453.
[36] M. R. Marostica, G. M. Pastore, “Biotransformation of limonene: A review of the main metabolic pathways,”. Quimica Nova, 2007, 30(2): 382-387.
[37] Y. Noma, S. Yamasaki, Y. Asakawa, “Biotransformation of limonene and related compounds by Aspergillus cellulosae,”. Phytochemistry, 1992, 31(8): 2725-2727.
[38] M. L. Thompson, R. Marriott, A. Dowle, G. Grogan, “Biotransformation of β-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants,” Applied Microbiology and Biotechnology, 2010, 85(3): 721-730.
[39] D. Hua, S. Lin, Y. Li, C. Hong, Z. Zhaobin, D. Yi, et al, “Enhanced 2-phenylethanol production from L-phenylalanine via in situ product adsorption,” Journal of Biocatalysis and Biotransformation, 2010, 28(4): 259-266.
[40] X. Qian, W. Yan, W. Zhang, W.-L. Dong,J.-F. Ma,K. Ochsenreither et al, “Current status and perspectives of 2-phenylethanol production through biological processes,” Critical Reviews in Biotechnology, 2018, 39(2): 235-248.