The Effect of Substitution of CaO/MgO and CaO/SrO on in vitro Bioactivity of Sol-Gel Derived Bioactive Glass
Authors: Zeinab Hajifathali, Moghan Amirhosseinian
Abstract:
This study had two main aims: firstly, to determine how the individual substitution of CaO/MgO and CaO/SrO can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG) and secondly to introduce a composition in the 60SiO2–(36-x)CaO–4P2O5–(x)MgO and 60SiO2–(36-x)CaO–4P2O5–(x)SrO quaternary systems (where x= 0, 5, 10 mol.%) with enhanced biocompatibility, alkaline phosphatase (ALP) activity, and more efficient antibacterial activity against MRSA bacteria. Results showed that both magnesium-substituted bioactive glasses (M-BGs) and strontium- substituted bioactive glasses (S-BGs) retarded the Hydroxyapatite (HA) formation. Meanwhile, magnesium had more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ALP assays revealed that the presence of moderate amount (5 mol%) of Mg and Sr had a stimulating effect on increasing of both proliferation and differentiation of MC3T3-E1 cells. Live dead and Dapi/actin staining revealed both substitution of CaO/MgO and CaO/SrO resulted in more biocompatibility and stimulation potential of the MC3T3 cells compared with control. Taken together, among all of the synthesized magnesium substituted (MBGs) and strontium substituted (SBGs), the sample 58- BG with 5 mol% CaO/MgO substitution (BG-5M) was considered as a multifunctional biomaterial in bone tissue regeneration field with enhanced biocompatibility, ALP activity as well as the highest antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria.
Keywords: Apatite, alkaline earth, bioactivity, biomedical applications, sol-gel.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3299413
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842References:
[1] L. L. Hench, J. Mater. Sci. Mater. Med. 17 (2006) 967–978.
[2] R. C. Bielby, I. S. Christodoulou, R. S. Pryce, W. J. P. Radford, L. L. Hench, J. M. Polak, Tissue Eng. 10 (2004) 1018–1026.
[3] J. R. Jones, Acta Biomater. 9 (2013) 4457–4486.
[4] M. N. Rahaman, D. E. Day, B. Sonny Bal, Q. Fu, S. B. Jung, L. F. Bonewald, A. P. Tomsia, Acta Biomater. 7 (2011) 2355–2373.
[5] S. Kaya, M. Cresswell, A. R. Boccaccini, Mater. Sci. Eng. C 83 (2018) 99–107.
[6] P. Sepulveda, J. R. Jones, L. L. Hench, J. Biomed. Mater. Res. 58 (2001) 734–740.
[7] L. Treccani, T. Yvonne Klein, F. Meder, K. Pardun, K. Rezwan, Acta Biomater. 9 (2013) 7115–7150.
[8] I. A. Silver, J. Deas, M. Erecińska, Biomaterials 22 (2001) 175–185.
[9] S. Joughehdoust, S. Manafi, Mater. Sci. (2012).
[10] P. Jha, K. Singh, Ceram. Int. 42 (2016) 436–444.
[11] A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, Ceram. Int. (2018).
[12] A. Moghanian, S. Firoozi, M. Tahriri, Ceram. Int. 43 (2017).
[13] S. Hesaraki, M. Alizadeh, H. Nazarian, D. Sharifi, J. Mater. Sci. Mater. Med. 21 (2010) 695–705.
[14] L. Courthéoux, J. Lao, J.-M. Nedelec, E. Jallot, (2008).
[15] C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Biomaterials 34 (2013) 422–433.
[16] J. J. Blaker, S. N. Nazhat, A. R. Boccaccini, Biomaterials 25 (2004) 1319–1329.
[17] F. Sharifianjazi, N. Parvin, M. Tahriri, Ceram. Int. 43 (2017) 15214–15220.
[18] A. Moghanian, S. Firoozi, M. Tahriri, Ceram. Int. 43 (2017) 12835–12843.
[19] A. Moghanian, S. Firoozi, M. Tahriri, A. Sedghi, Mater. Sci. Eng. C 91 (2018) 349–360.
[20] I. D. Xynos, A. J. Edgar, L. D. K. Buttery, L. L. Hench, J. M. Polak, Biochem. Biophys. Res. Commun. 276 (2000) 461–465.
[21] J. R. Jones, L. M. Ehrenfried, P. Saravanapavan, L. L. Hench, J. Mater. Sci. Mater. Med. 17 (2006) 989–996.
[22] J. Liu, S. C. F. Rawlinson, R. G. Hill, F. Fortune, Dent. Mater. 32 (2016) 412–422.
[23] D. Campoccia, L. Montanaro, C. R. Arciola, Biomaterials 27 (2006) 2331–2339.
[24] P. Stoor, E. Soderling, R. Grenman, J. Biomed. Mater. Res. 58 (2001) 113–120.
[25] S. Hu, J. Chang, M. Liu, C. Ning, J. Mater. Sci. Mater. Med. 20 (2009) 281–286.
[26] S. Hu, C. Ning, Y. Zhou, L. Chen, K. Lin, J. Chang, J. Wuhan Univ. Technol. Sci. Ed. 26 (2011) 226–230.
[27] D. Khvostenko, T. J. Hilton, J. L. Ferracane, J. C. Mitchell, J. J. Kruzic, Dent. Mater. 32 (2016) 73–81.
[28] M. C. Enright, D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann, B. G. Spratt, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 7687–92.
[29] I. Cacciotti, A. Bianco, M. Lombardi, L. Montanaro, J. Eur. Ceram. Soc. 29 (2009) 2969–2978.
[30] H. Zreiqat, C. R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, J. Biomed. Mater. Res. 62 (2002) 175–184.
[31] R. K. Rude, H. E. Gruber, H. J. Norton, L. Y. Wei, A. Frausto, J. Kilburn, Bone 37 (2005) 211–219.
[32] S. Pors Nielsen, Bone 35 (2004) 583–588.
[33] S. Murphy, A. W. Wren, M. R. Towler, D. Boyd, J. Mater. Sci. Mater. Med. 21 (2010) 2827–2834.
[34] P. J. Meunier, C. Roux, S. Ortolani, M. Diaz-Curiel, J. Compston, P. Marquis, C. Cormier, G. Isaia, J. Badurski, J. D. Wark, J. Collette, J. Y. Reginster, Osteoporos. Int. 20 (2009) 1663–1673.
[35] J. Y. Reginster, E. Seeman, M. C. De Vernejoul, S. Adami, J. Compston, C. Phenekos, J. P. Devogelaer, M. D. Curiel, A. Sawicki, S. Goemaere, O. H. Sorensen, D. Felsenberg, P. J. Meunier, J. Clin. Endocrinol. Metab. 90 (2005) 2816–2822.
[36] D. Bellucci, A. Sola, R. Salvatori, A. Anesi, L. Chiarini, V. Cannillo, Mater. Sci. Eng. C 72 (2017) 566–575.
[37] S. J. Watts, R. G. Hill, M. D. O’Donnell, R. V. Law, J. Non. Cryst. Solids 356 (2010) 517–524.
[38] M. Prabhu, K. Kavitha, P. Manivasakan, V. Rajendran, P. Kulandaivelu, Ceram. Int. 39 (2013) 1683–1694.
[39] M. Erol, A. Özyuguran, Ö. Çelebican, Chem. Eng. Technol. 33 (2010) 1066–1074.
[40] F. Yang, D. Yang, J. Tu, Q. Zheng, L. Cai, L. Wang, Stem Cells 29 (2011) 981–991.
[41] M. Saghiri, J. Orangi, A. Asatourian, Dent. Mater. (2017).
[42] J. Wen, J. Li, H. Pan, W. Zhang, D. Zeng, L. Xu, Q. Wu, X. Zhang, X. Liu, X. Jiang, Y.Z. Zhang, G. Schlewitz, G. Szalay, M. Schumacher, M. Gelinsky, R. Schnettler, V. Alt, J. Mater. Chem. B 3 (2015) 4790–4804.
[43] J. Du, Y. Xiang, J. Non. Cryst. Solids 358 (2012) 1059–1071.
[44] W. Zhang, Y. Shen, H. Pan, K. Lin, X. Liu, B. W. Darvell, W. W. Lu, J. Chang, L. Deng, D. Wang, W. Huang, Acta Biomater. 7 (2011) 800–808.
[45] Y. Li, A. Matinmanesh, D. J. Curran, E. H. Schemitsch, P. Zalzal, M. Papini, A. W. Wren, M. R. Towler, J. Non. Cryst. Solids 458 (2017) 69–75.
[46] J. Lao, E. Jallot, J.-M. Nedelec, Chem. Mater. 20 (2008) 4969–4973.
[47] D. Sriranganathan, N. Kanwal, K. A. Hing, R. G. Hill, J. Mater. Sci. Mater. Med. 27 (2016) 39.
[48] J. Pérez-Pariente, A. F. Balas, M. Vallet-Regí*, Chem. Mater 12 (2000) 750–755.
[49] J. Ma, C. Z. Chen, D. G. Wang, Y. Jiao, J. Z. Shi, Colloids Surfaces B Biointerfaces 81 (2010) 87–95.
[50] E. Dietrich, H. Oudadesse, J. Biomed. 88 (2009) 1087–1096.
[51] S. Hesaraki, M. Gholami, S. Vazehrad, S. Shahrabi, Mater. Sci. Eng. C 30 (2010) 383–390.
[52] A. Goel, R. R. Rajagopal, J. M. F. Ferreira, Acta Biomater. 7 (2011) 4071–4080.
[53] J. Lao, J. M. Nedelec, E. Jallot, Y. Tsouderos, P. Deloffre, M. Hott, P. J. Marie, P. D. Delmas, C. Christiansen, H. Seznec, R. Rizzoli, H. K. Genant, J. Y. Reginster, J. Mater. Chem. 19 (2009) 2940.
[54] A. Hoppe, B. Sarker, R. Detsch, N. Hild, D. Mohn, W. J. Stark, A. R. Boccaccini, J. Non. Cryst. Solids 387 (2014) 41–46.
[55] S. Taherkhani, F. Moztarzadeh, J. Sol-Gel Sci. Technol. 78 (2016) 539–549.
[56] J. S. Moya, A. P. Tomsia, A. Pazo, C. Santos, F. Guitin, J. Mater. Sci. Mater. Med. 5 (1994) 529–532.
[57] J. Christie, N. de Leeuw, J. Mater. Sci. (2017).
[58] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24 (1990) 721–734.
[59] J. Ma, C. Z. Chen, D. G. Wang, X. Shao, C. Z. Wang, H. M. Zhang, Ceram. Int. 38 (2012) 6677–6684.
[60] K. Zheng, S. Yang, J. Wang, C. Rűssel, C. Liu, W. Liang, J. Non. Cryst. Solids 358 (2012) 387–391.
[61] S. Ni, J. Chang, L. Chou, J. Biomed. Mater. Res. Part A 76A (2006) 196–205.
[62] Z. Zhong, J. Qin, J. Ma, Ceram. Int. 41 (2015) 8878–8884.
[63] S. Shahrabi, S. Hesaraki, S. Moemeni, M. Khorami, Ceram. Int. 37 (2011) 2737–2746.
[64] D. Roy, J. Phys. Chem. Solids 68 (2007) 2321–2325.
[65] Z. Amjad, P.. Koutsoukos, G.. Nancollas, J. Colloid Interface Sci. 101 (1984) 250–256.
[66] X. Wu, G. Meng, S. Wang, F. Wu, W. Huang, Z. Gu, Mater. Sci. Eng. C 52 (2015) 242–250.
[67] X. Zhang, Y. Wu, S. He, D. Yang, Surf. Coatings Technol. 201 (2007) 6051–6058.
[68] M. Mozafari, M. Rabiee, M. Azami, S. Maleknia, Appl. Surf. Sci. 257 (2010) 1740–1749.
[69] L. L. Hench, J. Wilson, An Introduction to Bioceramics, World Scientific, 1993.
[70] G. S. Lázaro, S. C. Santos, C. X. Resende, E. A. dos Santos, J. Non. Cryst. Solids 386 (2014) 19–28.
[71] A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, M. Karimi, Mater. Sci. Eng. C 29 (2009) 335–340.
[72] K. Qiu, X. J. Zhao, C. X. Wan, C. S. Zhao, Y. W. Chen, Biomaterials 27 (2006) 1277–1286.
[73] F. He, J. Zhang, F. Yang, J. Zhu, X. Tian, X. Chen, Mater. Sci. Eng. C 50 (2015) 257–265.
[74] P. Valerio, M. M. Pereira, A. M. Goes, M. F. Leite, Biomaterials 25 (2004) 2941–2948.
[75] W. K. Ramp, L. G. Lenz, K. K. Kaysinger, Bone Miner. 24 (1994) 59–73.
[76] Robinson D Griffith R Shechtman D Evans R Conzemius M, Acta Biomater. 6 (2010) 1869–1877.