Effects of Ophiocordyceps dipterigena BCC 2073 β-Glucan as a Prebiotic on the in vitro Growth of Probiotic and Pathogenic Bacteria
Authors: Wai Prathumpai, Pranee Rachtawee, Sutamat Khajeeram, Pariya Na Nakorn
Abstract:
The β-glucan produced by Ophiocordyceps dipterigena BCC 2073 is a (1, 3)-β-D-glucan with highly branching O-6-linkedside chains that is resistant to acid hydrolysis (by hydrochloric acid and porcine pancreatic alpha-amylase). This β-glucan can be utilized as a prebiotic due to its advantageous structural and biological properties. The effects of using this β-glucan as the sole carbon source for the in vitro growth of two probiotic bacteria (L. acidophilus BCC 13938 and B. animalis ATCC 25527) were investigated. Compared with the effect of using 1% glucose or fructo-oligosaccharide (FOS) as the sole carbon source, using 1% β-glucan for this purpose showed that this prebiotic supported and stimulated the growth of both types of probiotic bacteria and induced them to produce the highest levels of metabolites during their growth. The highest levels of lactic and acetic acid, 10.04 g·L-1 and 2.82 g·L-1, respectively, were observed at 2 h of cultivation using glucose as the sole carbon source. Furthermore, the fermentation broth obtained using 1% β-glucan as the sole carbon source had greater antibacterial activity against selected pathogenic bacteria (B. subtilis TISTR 008, E. coli TISTR 780, and S. typhimurium TISTR 292) than did the broths prepared using glucose or FOS as the sole carbon source. The fermentation broth obtained by growing L. acidophilus BCC 13938 in the presence of β-glucan inhibited the growth of B. subtilis TISTR 008 by more than 70% and inhibited the growth of both S. typhimurium TISTR 292 and E. coli TISTR 780 by more than 90%. In conclusion, O. dipterigena BCC 2073 is a potential source of a β-glucan prebiotic that could be used for commercial production in the near future.
Keywords: β-glucan, Ophiocordyceps dipterigena, prebiotic, probiotic, antimicrobial.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3298813
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939References:
[1] Pompei, A., Cordisco, L., Raimondi, S., Amaretti, A., Pagnoni, U. M., Matteuzzi, D., Rossi, M. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe., 2008, 14: 280-286.
[2] Grootaert, C., Delcour, J. A., Courtin, C. M., Broekaert, W. F., Verstraete, W., Van de Wiele, T. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci. Tech., 2007, 18: 64-71.
[3] Roberfroid, M. B. Prebiotics: preferential substrates for specific germs?. Am. J. Clin. Nutr. 2001, 73: 406S-409S.
[4] Su, P., Henriksson, A., Mitchell, H. Selected prebiotics support the growth of probiotic mono-cultures in vitro. Anaerobe., 2007, 13: 134-139.
[5] Swennen, K., Courtin, C. M., Delcour, J. A. Non-digestible oligosaccharides with prebiotic properties.Crit. Rev. Food Sci. Nutr., 2006, 46, 459-71.
[6] Flickinger, E. A., Van Loo, J., Fahey, G. C. Jr. Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit. Rev. Food Sci. Nutr., 2003, 43: 19-60.
[7] Kelly, G. Inulin-type prebiotics-a review: part 1. Altern. Med. Rev., 2008, 13: 315-29.
[8] Aida, F. M. N. A., Shuhaimi, M., Yazid, M., Maaruf, A. G. Mushroom as a potential source of prebiotics: a review. Trends Food Sci. Tech., 2009, 20: 567-575.
[9] Van Laere, K. M., Hartemink, R., Bosveld, M., Schols, H. A., Voragen, A. G. Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J. Agric. Food. Chem., 2000, 48: 1644-1652.
[10] Splechtna, B., Nguyen, T. H., Steinbock, M., Kulbe, K. D., Lorenz, W., Haltrich, D. Production of prebiotic galacto-oligosaccharides from lactose using beta-galactosidases from Lactobacillus reuteri. J Agric. Food Chem., 2006, 54: 4999-5006.
[11] Franck, A. Technological functionality of inulin and oligofructose. Br. J. Nutr., 2002, 87: S287-91.
[12] Madla, S., Methacanon, P., Prasitsil, M., Kirtikara, K. Characterization of biocompatible fungi-derived polymers that induce IL-8 production. Carbohydr. Polym., 2005, 59: 275-280.
[13] Methacanon, P., Madla, S., Kirtikara, K., Prasitsil, M. Structural elucidation of bioactive fungi-derived polymers. Carbohydr. Polym., 2005, 60: 199-203.
[14] Prathumpai, W., Rachathewee, P., Khajeeram, S., Sanglier, J. J., Tanjak, P., Methacanon, P. Optimization, characterization and in vitro evaluation of entomopathogenic fungal exopolysaccharides as prebiotic. Adv. Biochem., 2013, 1: 13-21.
[15] Methacanon, P., Weerawatsophon, U., Tanjak, P., Rachtawee, P., Prathumpai, W. Interleukin-8 stimulating activity of low molecular weight -glucan depolymerized by -irradiation. Carbohydr. Polym., 2011, 86: 574-580.
[16] Kocharin K, Rachathevee P, Sanglier J. J., Prathumpai W. Exobiopolymer production of Ophiocordyceps dipterigena BCC 2073: optimization, scaling-up, and characterization. BMC Biotechnol.
[17] Bae, J. T., Park, J. P., Song, C. H., Yu, C. B., Park, M. K., Yun, J. W. Effect of carbon source on the mycelial growth and exo-biopolymer production by submerged culture of Paecilomyces japonica. J. Biosci Bioeng., 2001, 91: 522-524.
[18] Sinha, J., Bae, J. T., Park, J. P., Kim, K. H., Song, C. H., Yun, J. W. Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl. Microbiol. Biotechnol., 2001, 56: 88-92.
[19] Xu, C. P., Yun, J.W. Influence of aeration on the production and the quality of the exopolysaccharides from Paecilomyces tenuipes C240 in a stirred-tank fermenter. Enz. Microb. Technol., 2004, 35: 33-39.
[20] Kim, S. W., Hwang, H. J., Xu, C. P., Na, Y. S., Song, S. K., Yun, J. W. Influence of nutritional conditions on the mycelial growth and exopolysaccharide production in Paecilomyces sinclairii. Lett. Appl. Microbiol., 2002, 34: 389-93.
[21] Park, J. P., Kim, S. W., Hwang, H. J., Yun, J. W. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordycepsmilitaris. Lett. Appl. Microbiol., 2001, 33: 76-81.
[22] Kunová G., Rada V., Lisová I., RočkováŠ., Vlková E. In vitrofermentability of prebiotic oligosaccharides by lactobacilli. Czech J. Food Sci., 2011, 29: S49–S54.
[23] Mandadzhieva, T., Ignatova-Ivanova, T., Kambarev, S., Iliev, I., Ivanova, I. Utilization of Different Prebiotics by Lactobacillus Spp. and Lactococcus Spp. Biotechnol. Biotechnol., 2011, 25: 117-120.
[24] Nazzaro, F., Fratianni, P., Orlando, F., Coppola, R. Biochemical Traits, Survival and Biological Properties of the Probiotic Lactobacillus plantarum Grown in the Presence of Prebiotic Inulin and Pectin as Energy Source. Pharm., 2012, 5: 481-492.
[25] Ann, E. Y., Kim, Y., Oh, Sejong, I., Jee-Young, P., Han, D. J. K. S., Kim, S. H. Microencapsulation of Lactobacillus acidophilus ATCC 43121 with prebiotic substrates using a hybridisation system. Int. J. Food Sci. Tech., 2007, 42: 411–419.
[26] Rycroft, C. E., Jones, M. R., Gibson, G. R., Rastall, R.A. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol., 2001, 91: 878-87.
[27] Falony, G., Lazidou, K., Verschaeren, A., Weckx, S., Maes, D., De Vuyst, L. In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Appl. Environ. Microbiol., 2009, 75: 454-61.
[28] Palframan, R. J., Gibson, G. R., Rastall, R. A. Carbohydrate Preferences of Bifidobacterium Species Isolated from the Human Gut. Curr. Issues Intest. Microbiol., 2003, 4: 71-75.
[29] Gibson, G. R. From probiotics to prebiotics and a healthy digestive system. J. food sci., 2004, 69: M141-M143.
[30] Ho, C. Y., Chen, C. Y., Chen, Y. C., and Tsai, C. C. Effects of multistrain lactic acid bacteria with probiotic, properties on enhancements of IgA, IgG levels and anti-Salmonella Typhimurium invasion activity. http://web.hk.edu.tw/~gas/main/download/journal/63/156-173.pdf, 2011, 156-173.
[31] Likotrafiti, E., Tuohy, K. M., Gibson, G. R., Rastall, R. A. Development of antimicrobial synbiotics using potentially-probiotic faecal isolates of Lactobacillus fermentum and Bifidobacterium longum. Anaerobe., 2013, 20: 5-13.
[32] Ooi V. E. C. and Liu, F. Immunomodulation and Anti-Cancer Activity of Polysaccharide-Protein Complexes. Current Medicinal Chemistry, 2000, 7, 715-729.