Comprehensive Risk Assessment Model in Agile Construction Environment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33006
Comprehensive Risk Assessment Model in Agile Construction Environment

Authors: Jolanta Tamošaitienė

Abstract:

The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.

Keywords: Assessment, environment, agile, model, risk.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1316656

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086

References:


[1] E.K. Zavadskas, Z. Turskis, & J. Tamošaitiene, (2010). Risk assessment of construction projects, Journal of civil engineering and management, 16, 33–46
[2] J. Tamošaitienė, E. K. Zavadskas, & Z. Turskis (2013). Multi-criteria risk assessment of a construction project. Procedia Computer Science : First international conference on Information Technology and Quantitative Management (ITQM 2013), Suzhou, China, 16-18 May. Amsterdam: Elsevier Science BV. ISSN 1877-0509. 17, 129–133.
[3] EPA (Environmental Protection Authority), 2009. Review of the Environmental Impact Assessment Process in Western Australia http://epa.wa.gov.au/EPADocLib/2898_EIAReviewReportFinal30309.pdf.
[4] PMI (Project Management Institute), (2012). A Guide to the Project Management Body of Knowledge. 5th ed. s.l.:PMI.
[5] E. K. Zavadskas, Z. Turskis, & J. Tamošaitienė (2008). Construction risk assessment of small scale objects by applying TOPSIS method with attributes values determined at intervals. The 8th international conference "Reliability and statistics in transportation and communication" (RelStat-08), 15-18 October 2008, Riga, Latvia : proceedings / Transport and Telecommunication Institute, Kh. Kordonsky Charitable Foundation (USA), Latvian . Riga: Transport and Telecommunication Institute, 2008. 351–357.
[6] M. Kumar, J. Singh & M. Gregory (2016). Risk management in plant investment decisions: risk typology, dimensions and processes, Production Planning & Control, 27(9), 761–773.
[7] M. Zeleňáková & L. Zvijáková (2017). Risk analysis within environmental impact assessment of proposed construction activity, Environmental Impact Assessment Review, 62, 76–89.
[8] PMI (2003). Project Management Body of Knowledge (PMBOK), particularly Chapter 11, Risk Management. Upper Darby, PA: Project Management Institute. Available from http://www.pmi.org
[9] Chapman, C. (1997). Project risk analysis and management-PRAM the generic process. International Journal of Project Management 15(5), 273−281.
[10] AS/NZS 4360 (2004). Risk Management. Standards Australia, Sydney, NSW.
[11] IEC 62198 (2001). Project Risk Management-Application Guidelines.
[12] OGC. (2002). Management of Risk: Guidance for Practitioners (Office of Government Commerce). London: The Stationery Office.
[13] TBC. (2001). Integrated Risk Management Framework. Cat. No. BT22-78/2001. Available from www.canada.ca/en/treasury-board-secretariat/corporate/risk-management/guide-integrated-risk-management.html
[14] N. Almeida, V. Sousa, L. A. Dias & F. Branco (2010). A framework for combining risk-management and performance-based building approaches. Building Research & Information, 38(2), 157–174.
[15] E. K. Zavadskas, Z. Turskis & J. Tamošaitiene (2008). Contractor selection of construction in a competitive environment, Journal of Business Economics and Management 9(3): 181–187.
[16] H. K. Chan, & X., Wang (2013). Fuzzy Hierarchical Model for Risk Assessment. London: Springer-Verlag.
[17] A. Nieto-Morote & F. Ruz-Vila (2011). A fuzzy approach to construction project risk assessment. International Journal of Project Management, 29, 220–231.https://doi.org/10.1016/j.ijproman.2010.02.002
[18] A. Ammar, K. Berman, & A. Sataporn (2007). A review of techniques for risk management in projects. Benchmarking: An International Journal, 14, 22–36.10.1108/14635770710730919
[19] A. Klemetti (2006). Risk management in construction project networks. 115. http://lib.tkk.fi/Reports/2006/isbn9512281473.pdf
[20] M. Kumar, J. S. Srai & M. Gregory (2016). Risk management in plant investment decisions: risk typology, dimensions and process. Product Planning & Control, 27(9), 761−773.
[21] J. Tamošaitienė, Z. Turskis, & E. K. Zavadskas, (2008). Modeling of contractor selection taking into account different risk level. The 25th International Symposium on Automation and Robotics in Construction (ISARC 2008): selected papers, June 26-29, 2008 Vilnius, Lithuania. Vilnius: Technika, 2008. 676–681.
[22] S. Iqbal, R.M. Choudhry, K. Holschemacher, A. Ali & J. Tamošaitienė, (2015). Risk management in construction projects. Technological and Economic Development of Economy 21(1): 65–78.
[23] M. M. Fouladgar, A. Yazdani-Chamzini & E.K. Zavadskas (2012). Risk evaluation of tunneling projects. Archives of Civil and Mechanical Engineering 12(1): 1−12.
[24] H. Li, K. Dong, H. Jiang, R. Sun, X. Guo, & Y. Fan (2017). Risk Assessment of China’s Overseas Oil Refining Investment Using a Fuzzy-Grey Comprehensive Evaluation Method, Sustainability, 9, 696; doi:10.3390/su9050696.
[25] K. Chatterjee, E. K. Zavadskas, J. Tamošaitienė, K. Adhikary, & S. Kar (2018). A Hybrid MCDM Technique for Risk Management in Construction Projects. Symmetry 10(2), 46; doi:10.3390/sym10020046
[26] L.Pavlos, & F. Nick, (2012). Risk and uncertainty in development: A critical evaluation of using the Monte Carlo simulation method as a decision tool in real estate development projects. Journal of Property Investment & Finance 30, 198–210.10.1108/14635781211206922
[27] A. Yazdani-Chamzini, S.H. Yakhchali & M. Mahmoodian (2013). Risk ranking of tunnel construction projects by using the ELECTRE technique under a fuzzy environment. International Journal of Management Science and Engineering Management 8(1), 1−14.
[28] K. Chatterjee, E. K. Zavadskas, J. Tamošaitienė, K. Adhikary, & S. Kar (2018). A Hybrid MCDM Technique for Risk Management in Construction Projects. Symmetry 10(2), 46; doi:10.3390/sym10020046
[29] N. Rikhtegar, N. Mansouri, A.A. Oroumieh, A., Yazdani-Chamzini, E.K., Zavadskas & S. Kildienė (2014). Environmental impact assessment based on group decision-making methods in mining projects, Economic Research-Ekonomska Istraživanja 27(1): 378–392.
[30] J. Tamošaitienė & O. Kaplinski (2013), Strategic environmental assessment (SEA) of socio-economic systems: a systematic review, Technological and economic development of economy. 19(4): 661–674.
[31] Börner, I. (1980). Untersuchungen zur Optimierung nach mehreren Zielen für Aufgaben der Bautechnologie, TH Leipzig, Sektion Technologie der Bauproduktion, Diplomarbeit
[32] Peldschus, F. (1986). Zur Anwendung der Theorie der Spiele für Aufgaben der Bautechnologie: Dissertation B. Technischen Hochschule Leipzig. 119.
[33] E. K. Zavadskas, L. Ustinovichius & F. Peldschus, (2003). Development of software for multiple criteria evaluation, Informatica 14(2) 259–272.
[34] H. Körth, (1969). Untersuchungen zur nichtlinearen Optimierung ökonomischer Erscheinungen und Prozesse unter besonderer Berücksichtigung der Quotenoptimierung sowie der Lösung ökonomischer mathematischer Modelle bei der Existenz mehrerer Zielfunktionen, Habilitationsschrift, Humbold-Universität Berlin, Sektion Wirtschaftswissenschaften.
[35] D. Weitendorf (1976). Beitrag zur Optimierung der räumlichen Struktur eines Gebäudes, Dissertation A, Hochschule für Architektur und Bauwesen Weimar,
[36] H. Jüttler (1966). Untersuchungen zu Fragen der Operationsforschung und ihrer Anwendungsmöglichkeiten auf ökonomische Problemstellungen unter besonderer Berücksichtigung der Spieltheorie, Dissertation A, Wirtschftswissenschaftliche Fakultät der Humbold-Universität Berlin,
[37] F. Stopp (1975). Variantenvergleich durch Matrixspiele, Wissenschaftliche Zeitschrift der Hochschule für Bauwesen Leipzig Heft 2.
[38] F. Peldschus (2008). Experience of the game theory application in construction management, Technological and Economic Development of Economy 14(4), 531–545.
[39] E. K. Zavadskas, (2008). History and evolving trends of construction colloquia on sustainability and operational research, Technological and Economic Development of Economy 14(4) 578–592.
[40] E. K. Zavadskas & Z. Turskis (2008). A New logarithmic normalization method in Games Theory, Informatica 19(2) 303–314.
[41] Z. Turskis, E. K. Zavadskas & Peldschus, F. (2009). Multi-criteria optimization system for decision making in construction design and management, Inzinerine Ekonomika-Engineering Economics 1, 7–17.
[42] E. K. Zavadskas, F. Peldschus & L. Ustinovichius (2003). Development of software for multiple criteria evaluation. Informatica 14(2): 259–272.
[43] Z. Turskis, E. K. Zavadskas & F. Peldschus, (2009). Multi-criteria optimization system for decision making in construction design and management. Inzinerine ekonomika-Engineering Economics 1(61): 7–17.