The Effect of Temperature and Salinity on the Growth and Carotenogenesis of Three Dunaliella Species (Dunaliella sp. Lake Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
The Effect of Temperature and Salinity on the Growth and Carotenogenesis of Three Dunaliella Species (Dunaliella sp. Lake Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions

Authors: Imen Hamed, Burcu Ak, Oya Işık, Leyla Uslu, Kubilay Kazım Vursavuş

Abstract:

In this study, 3 species of Dunaliella (Dunaliella sp. Salt Lake isoalte (Tuz Gölü), Dunaliella salina CCAP19/18, and Dunaliella bardawil LB 2538) and their optical density, dry matter, chlorophyll a, total carotenoids, and β-carotene production were investigated in a batch system. The aim of this research was to compare carotenoids, and β-carotene production were investigated in a batch those 3 species. Therefore 2 stress factors were used: 2 different temperatures (20°C and 30°C) and 2 different salinities (30‰, and 60‰) were tested over a 17-day study. The highest growth and chlorophyll a was reported for Dunaliella sp. under 20°C/30‰ and 20°C/60‰ conditions respectively followed by D. bardawil and D. salina. Significant differences were noticed (p<0.05) for the other 3 species. The growth decreased as temperature and salinity increased since the lowest growth was noticed for the 30°C/60‰ group. The chlorophyll a content decreased also as temperature increased however when the NaCl concentration increased an augmentation of the content was noticed . In the 17th day of experiment the highest carotenoids concentration was reported for D. bardawil 20°C/30‰ (65,639±0,400 μg.mL1) and the most important β carotene concentration was for D. salina 20°C/60‰ (8,98E-07±0,013 mol/L).

Keywords: Dunaliella sp., Dunaliella salina, Dunaliella bardawil, stress factors, pigments, growth.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1316233

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007

References:


[1] Dunal, F., 1838. Extrait d'un Mémoire sur les Algues qui Colorent en Rouge Certains Eaux des Marais Salants Méditerranéens. Annales des Sciences Naturelles; Botanique, sér. 2, 9:172
[2] Teodoresco, E.C., 1905. Organisation et Développement du Dunaliella, Nouveau Genre de Volvocacée-Polyblepharidée. Beihz Bot Centralbl, Bd. XVIII, 215-232
[3] Nguyen, S., Tran, D., Portilla, S., & Vo, T. (2014 ). Medium improvement for higher growth and longer stationary phase of Dunaliella. Journal of Plant Sciences 2: 9-13
[4] Oren, A. (2005). A hundred years of Dunaliella research: 1905-2005. Saline Systems 1: 1-14.
[5] Rad, F. A., Aksoz, N. & Hejazi, M.A. (2011). Effect of salinity on cell growth and β-carotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Iran. African Journal of Biotechnology 10: 2282-2289
[6] Tran, D., Doan, N., Louime, C., Giordano, M., & Portilla, S. (2014). Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium. World Journal of Microbiology and Biotechnology 30: 317-322
[7] Taha, O., Abo El-Kheir, W., Hammouda, F., & Abd El-Hady, H. (2012). Production of ß-carotene and glycerol from Dunaliella bardawil and D. salina isolated from the Egyptian wet-lands Qarun and Bardawil. Paper presented at the International Conference on Ecological, Environmental and Biological Sciences, Dubai
[8] Leach, G., Oliveira, G., & Morais, R. (1998). Spray-drying of Dunaliella salina to produce a b- carotene rich powder. Journal of Industrial Microbiology & Biotechnology 20: 82-85
[9] Ben-Amotz, A., & Avron, M. (1990). The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology 8: 121-126.
[10] Park, S., Lee, Y., & Jin, E. (2013). Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis. Algae 28: 203-211
[11] Borowitzka, L. J., & Borowitzka, M.A. (1989). β-carotene (provitamin A) production with algae. In: Biotechnology of Vitamins, Pigments and Growth Factors. E.J. Vandamme., Editor. Elsevier Science Publishers: Essex, England. 15-27 pp
[12] Tafreshi, A.H., & Shariati, M. (2009). Dunaliella biotechnology: methods and applications. Journal of Applied Microbiology, 107(1), 14-35
[13] El Baky, H. H. A., & El-Baroty, G. S. (2013). Healthy benefit of microalgal bioactive substances. Journal of Aquatic Science, 1(1), 11-22.
[14] Tafreshi, A. H., & Shariati, M. (2006). Pilot culture of three strains of Dunaliella salina for β-carotene production in open ponds in the central region of Iran. World Journal of Microbiology and Biotechnology 22: 1003-1006
[15] Olmos, J., Paniagua, J., & Contreras, R. (2000). Molecular identification of Dunaliella sp. utilizing the 18SrDNA gene. Letters in Applied Microbiology 30: 80-84.
[16] Emeish, S. (2012). Production of Natural β-Carotene from Dunaliella Living in the Dead Sea. Jordan Journal of Earth and Environmental Sciences 4: 23- 27.
[17] Raja, R., Hemaiswarya, S., & Rengasamy, R. (2007). Exploitation of Dunaliella for beta-carotene production. Applied Microbiology and Biotechnology 74: 517-523.
[18] Hejazi, M., &. Wijffels, R.H. (2003). Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomolecular Engineering 20: 171-175.
[19] Garcia-Gonzalez, M., Moreno, J., Manzano, J. C., Florencio, F. J., & Guerrero, M. G. (2005). Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. Journa of Biotechnology 115: 81-90
[20] García-Chavarría, M., & Lara-Flores, M. (2013). The use of carotenoid in aquaculture. Research Journal of Fisheries and Hydrobiology 8: 38-49.
[21] Borowitzka, M. A., & Siva, C. J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19(5), 567-590.
[22] Hamed, I, Ak, B, Oya Işık, O*, Leyla Uslu, L. (2017). The Effects of Salinity and Temperature on the Growth of Dunaliella sp. Isolated from the Salt Lake (Tuz Gölü), Turkey. Turkish Journal of Fisheries and Aquatic Sciences. DOI: 10.4194/1303-2712-v17_6_29
[23] Strickland, J. D. H., & Parsons, T. R., 1965. A manual of sea water analysis. Bull. Fisheries Res. Board Can. no. 125, 2nd Ed., 203 p
[24] Javeria, S., Masud, T., Sammi, S., Tariq, S., Sohail, A., Butt, S. J., Abbasi K. S., & Ali, S. (2013). Comparative Study for the Extraction of β-Carotene in Different Vegetables. Pakistan Journal of Nutrition, 12, 983
[25] Gómez, P. I., Barriga, A., Cifuentes, A. S., & González, M. A. (2003). Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biological Research, 36(2), 185-192.
[26] Gómez, P. I., & González, M. A. (2005). The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biological research, 38(2-3), 151-162.
[27] Çelekli, A., & Dönmez, G. (2006). Effect of pH, light intensity, salt and nitrogen concentrations on growth and β-carotene accumulation by a new isolate of Dunaliella sp. World Journal of Microbiology and Biotechnology, 22, 183-189
[28] García, F., Freile-Pelegrín, Y., & Robledo, D. (2007). Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan,