Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles

Authors: Anthony Overmars, Sitalakshmi Venkatraman

Abstract:

This paper presents a method for determining all of the co-prime right angle triangles in the Euclidean field by looking at the intersection of the Pythagorean and Platonic right angle triangles and the corresponding lattice that this produces. The co-prime properties of each lattice point representing a unique right angle triangle are then considered. This paper proposes a conjunction between these two ancient disparaging theorists. This work has wide applications in information security where cryptography involves improved ways of finding tuples of prime numbers for secure communication systems. In particular, this paper has direct impact in enhancing the encryption and decryption algorithms in cryptography.

Keywords: Pythagorean triples, platonic triples, right angle triangles, co-prime numbers, cryptography.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1340380

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269

References:


[1] B. Berggren. Pytagoreiska trianglar (in Swedish). Tidskrift fo¨r elementa¨r mamematik, fysik och kemi 17: 129–139, 1934.
[2] S. Kak, and M. Prabhu, Cryptographic applications of primitive Pythagorean triples. Cryptologia, 38:215–222, 2014.
[3] R. L. Rivest, Cryptography. In J. Van Leeuwen. Handbook of Theoretical Computer Science. 1. Elsevier, 1990.
[4] Frank R. Bernhart, and H. Lee Price, Pythagoras' garden, revisited, Australian Senior Mathematics, 26(1):29-40, 2012.
[5] E. Maor. The Pythagorean theorem, a 4,000-year history. Princeton University Press. Princeton, New Jersey, 2007.
[6] H. M. Stark, An Introduction to Number Theory. Cambridge, MA: MIT Press, 1994.
[7] W. Sierpinski. Pythagorean triangles, Scripta Mathematica Studies, No. 9, Yeshiva University, New York, 1962.
[8] R. A. Saunders, and T. Randall, The family tree of the Pythagorean triplets revisited, Mathematical Gazette, JSTOR, 78: 190–193, 1994.
[9] J. Rukavicka, Dickson's Method for Generating Pythagorean Triples Revisited, European Journal of Pure and Applied Mathematics ISSN 1307-5543, 6(3): 363-364, 2013.
[10] Euclid. (1908) 1956. The thirteen books of Euclid's Elements. Translated from the text of Heiberg, with introduction and commentary by Sir Thomas L. Heath. Second edition. Three volumes. New York: Dover Publications.
[11] A. Hall. Genealogy of Pythagorean Triads, The Mathematical Gasette, 54(390):377–379, 1970.
[12] T. Roy, and F. J. Soni, A Direct Method To Generate Pythagorean Triples And Its Generalization To Pythagorean Quadruples And n-tuples, arXiv:1201.2145 (math.NT), 1-11, 2012
[13] A. Overmars, and L. Ntogramatzidis, A new parameterisation of Pythagorean triples in terms of odd and even series, Cornell University, arXiv:1504.03163 (math.HO), 1-9, 2015
[14] A. J. Menezes, P. C. van Oorschot, and S. Vanstone, A. Handbook of Applied Cryptography. CRC Press, USA, 1996.
[15] N. Biggs, Codes: An introduction to Information Communication and Cryptography. Springer. p. 171, 2008.
[16] R. L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM. Association for Computing Machinery. 21 (2): 120–126, 1978.
[17] A. Menezes, P. Van Oorschot, S. Vanstone, Handbook of Applied Cryptography, Boca Raton, FL, CRC Press, Taylor & Franscis Group, 1997.