Study on Liquid Nitrogen Gravity Circulation Loop for Cryopumps in Large Space Simulator

Weiwei Shan, Wenjing Ding, Juan Ning, Chao He, Zijuan Wang

Abstract—Gravity circulation loop for the cryopumps of the space simulator is introduced, and two phase mathematic model of flow heat transfer is analyzed as well. Based on this model, the liquid nitrogen (LN2) gravity circulation loop including its equipment and layout is designed and has served as LN2 feeding system for cryopumps in one large space simulator. With the help of control software and human machine interface, this system can be operated flexibly, simply, and automatically under four conditions. When running this system, the results show that the cryopumps can be cooled down and maintained under the required temperature, 120 K.

Keywords—Cryopumps, gravity circulation loop, liquid nitrogen, two-phase.

I. INTRODUCTION

The cryopump, the critical equipment in the space simulator, should be equipped with LN2 feeding system to ensure its panel’s temperature is below 120 K [1] when it is working. LN2 feeding system supplies LN2 for the panel with the required flow rate and the pressure. There are many types of system involved in feeding LN2 for the cryopump, i.e. tank self-pressurization system, open boiling system and gravity circulation loop system [2]. Tank self-pressurization system should be equipped with two sets of tanks at least, one for supplying LN2 and the other for recovering LN2. The merit is that LN2 can be recycled and reused. However, the installation site of the tank is outside the building which causes the long distance piping, bigger energy loss, and low economic efficiency. As far as the open boiling system is concerned, its density difference caused short distance piping, bigger energy loss, and low economic efficiency. For the gravity circulation loop system, the piping is relatively easy to design compared with other systems. However, the residual LN2 in the piping is vented into the atmosphere directly which results in the waste of LN2 and environmental pollution.

Gravity circulation loop system has much more advantages i.e. convenient operation and maintenance, short distance piping, and lower investment as well. Moreover, subcooler and LN2 pump are not equipped any more. At the same time, the operating costs are also decreased because of LN2 recycling. The key to a successful gravity circulation loop system is good accuracy of system designing. Based on the working principle, the core process is LN2 evaporation and two-phase flow in the gravity circulation loop. Since the fifties of last century, two phase flow and LN2 boiling have been studied abroad in terms of theory and experiment research. The research on two phase flow implemented domestically focuses on fundamental theory, power system application and simulation. Because of its special characteristics, the introduction and research on gravity circulation loop have been found in the references from Russia [3], Korea [4]-[6], France [7], Japan and USA [8]-[11], which show that it has been successfully applied and gives us the confidence to carry out its development.

This paper, with the background of one large space simulator, studies the gravity circulation loop and concludes the theoretical simulation method. Based on this method, the gravity circulation system and its piping were designed and developed. The commissioning results were shown at the end of the paper.

II. WORKING PRINCIPLE

The function of gravity circulation loop system is to maintain the temperature of panel in the cryopump below 120 K. Its schematic drawing is shown in Fig. 1. Located in the platform (on top of the vacuum chamber), LN2 tank supplies LN2 for the panel through pipeline. LN2 absorbs the heat and partially vaporizes in the panel. The liquid phase flows back and is recycled into the tank and gaseous phase is vented out.

During the whole circulation, the density difference caused by two phase flow drives the whole flow process. The dynamic pressure head generated by change on void fraction of two phase flow overcomes flow resistance of two-phase flow in the pipeline.

III. THEORETICAL METHOD AND NUMERICAL SIMULATION

A. Two-Phase Flow Heat Transfer Model

LN2 forced flow boiling model by Kilmenko and Sudarchikov [12] is given as follows: In their experiment, LN2 boiling happened in a stainless steel pipe of 10 mm diameter and 1850 mm length and its boiling data were measured in both subcooled state and boiling state. The heat transfer formula is given as:

\[
\frac{Nu}{Nu_0} = \begin{cases}
1 & Bo < 6 \times 10^7 \\
0.0041Bo^{0.6} & Bo > 6 \times 10^7
\end{cases}
\] (1)

where

\[
Nu_0 = 0.0042 Pe^{0.6} K_\rho^{0.5} \theta^{0.2}
\] (2)

Nu is the average Nusselt number, Bo is the BoSE number, K is the fluid thermal conductivity, \(\rho \) is the fluid density, \(\theta \) is the temperature difference, Pe is the Péclet number.
The criterion number in (2) is as:

\[B_\omega = \frac{rG}{q} \left[1 + x \left(\frac{\rho'}{\rho} - 1 \right) \right] \]

\[P_{ec} = \frac{q[\sigma'g(\rho' - \rho^*)]^2}{\rho'a} \]

\[K_F = \frac{P}{\sigma (\rho' - \rho^*)^2} \]

\[S = \frac{(\rho c \lambda)}{(\rho c \lambda)} \]

\[Y^2 = \left(\frac{\partial F}{\partial z} \right)_{G0}, \left(\frac{\partial F}{\partial z} \right)_{L0} \]

By relating apparent single-phase friction factor to the above number Martinelli and number Chisholm, we have (9).

\[-\frac{\Delta p_F}{\rho} = 4 f_{LO} L \frac{G^2}{2 \rho} \left[\frac{1}{\Phi} \int_{\Phi}^{\Phi} \Phi \, dz \right] \]

where, Chishom number is given in (10):

\[\Phi_{LO} = 1 + (Y^2 - 1) [Bx^2 \left(1 - x \right) \frac{2^x}{x^2} + x^{2-x}] \]

\[Y^2 = \frac{\rho}{\rho_g} \left(\frac{u_g}{u_j} \right)^{0.2} \]

\[\rho_l, \rho_g \] are the velocity of liquid and gas separately.

\[\mu_l, \mu_g \] are viscosity factor of liquid and gas separately.

B. Two-Phase Flow Pressure Drop Model

In gravity circulation loop system, the calculation on pressure loss of two-phase flow is of importance to the successful system operation. The pressure difference between entrance and exit is made up of three parts, which are gravity pressure loss, friction pressure loss and accelerated velocity pressure loss. There are many formula used for two-phase flow, one of which is Marinelli-Chisholm [13]. It fits for small mass flowrte (G<1300 kg/(m²·s)). This method calculates the friction pressure loss of two-phase flow based on correcting the apparent single phase friction pressure loss. Four factors called Markov factors are defined. Martinelli number X² and Chisholm number Y² are defined as well. X² is the pressure loss ratio of partial liquid phase to partial gas phase, and Y² is the pressure loss ratio of all liquid phase to all gas phase.

\[X^2 = \left(\frac{dp_F}{dz} \right)_{Lfp} \left(\frac{dp_F}{dz} \right)_{G0} \]

\[Y^2 = \left(\frac{dp_F}{dz} \right)_{G0}, \left(\frac{dp_F}{dz} \right)_{L0} \]

\[\Phi_{LO} = 1 + (Y^2 - 1) [Bx^2 \left(1 - x \right) \frac{2^x}{x^2} + x^{2-x}] \]

C. Void Fraction Calculation

In the vertical pipe, each different local void fraction exits along with the position in the length direction. The simplification approach is to consider flow evacuation as subcooling flow and nuclear evacuation by way of combing calculation of bubble point and energy equation. That is to say, from the inlet to the bubble point, the temperature of fluid goes up continually. Beyond the bubble point, it goes into the boiling and heat transfer zone. In this zone, the temperature does not change. The void fracture can be calculated based on the experimental formula given by Klimenko.
From the inlet surface to the calculated surface, the absorbed heat energy is mainly used as the evaporation heat latent, the left part of which is used to increase the velocity. If the absorbed heat energy converts to the latent heat, the formula is given as:

$$\pi L dq = \frac{\pi d^2}{4} \cdot r \ell x$$

(12)

where, \(x \) is void fraction, \(L \) is length, \(d \) is pipe’s inner diameter, \(G \) is surface mass flow rate. Hence, the void fraction can be calculated as:

$$x = \frac{4Lq}{drG}$$

(13)

IV. SYSTEM DEVELOPMENT

A. System Layout

According to the function requirements, one set of gravity circulation loop system is designed for cryopumps of the large space simulator, which consists of one vertical type tank with 1.2 m³, pneumatic valves, temperature sensors, pressure transducers, and piping. The system can realize the four cryopumps’ precooling at the beginning and warming up in the end. Depending on the installation height of LN₂ tank, a satisfactory design can realize the whole system running successfully since the relative position of LN₂ tank to the cryopumps affects LN₂ cycling. Based on the symmetrical principle, the horizontal position of the tank is in the middle of four cryopumps, as shown in Fig. 2. The height of the tank is calculated by the simulation software given by [1]. To install the tank in the equipment room successfully, the height of the room must meet the installation requirements of the tank. Moreover, a platform shall be built for supporting the tank in advance.

![Fig. 2 (a) Layout drawing of gravity circulation loop system in front view](image1)

![Fig. 2 (b) Layout drawing of gravity circulation loop system in left view](image2)
B. System Design

The piping is used to connect between the tank and the cryopump to continuously provide LN\textsubscript{2} for the panel in the cryopump. The operating state of the system is monitored by sensors and transducers, and adjusted by pneumatic valves. To achieve the lowest evaporation rate in LN\textsubscript{2} piping, the cold leakage of LN\textsubscript{2} piping must be controlled and minimized. Therefore, vacuum insulation piping is chosen as LN\textsubscript{2} circulation pipeline.

The structure of vacuum insulation pipe is shown in Fig. 3. This kind of pipe is divided into inner pipe and outer pipe, with the vacuum layer in the middle. The vacuum degree of vacuum insulation pipe is no lower than 1.3\times10^{-2}\text{ Pa}. Surfaces of inner pipe and outer pipe are wrapped by special material to reduce the radiation heat transfer.

C. Operation Mode

Gravity feeding system has different working modes corresponding to different working states of cryopumps, including preparation, precooling and starting.

1. Preparation for Cooling Cryopumps

Since 1.2 m3 LN\textsubscript{2} tank is installed inside the building, feeding lines from LN\textsubscript{2} truck cannot connect to it. Therefore, LN\textsubscript{2} feeding lines are designed to connect 40 m3 LN\textsubscript{2} tank outside and 1.2 m3 LN\textsubscript{2} tank so that LN\textsubscript{2} can be fed to the small tank whenever it is needed. Considering the stable supplying LN\textsubscript{2} for cryopumps, the liquid level of 1.2 m3 tank can be set and maintained at certain value by installing a supplying pneumatic valve. As soon as the tank works, control software automatically adjusts the opening of supplying pneumatic valve to keep the level at 800 mm by PID. The details are as follows: When the level go down to 800 mm, PID gives a command to open the supplying valve. When the level goes up to 900 mm, PID gives a command to close the valve.

2. Cooling Pipeline

At the beginning of precooling cryopump, the temperature of pipelines and LN\textsubscript{2} panel of the cryopump remain the same as room temperature. LN\textsubscript{2} flows into the pipeline and LN\textsubscript{2} panel, and evaporates into gaseous nitrogen. If a large amount of gaseous nitrogen returns to LN\textsubscript{2} tank, it will cause LN\textsubscript{2} boiling in the tank. Hence, gaseous nitrogen is vented outside into atmosphere directly.

3. Working State

Temperature on recovering pipeline should be monitored by temperature sensor. When the value goes down to 120 K, the two phase flow has come out of the cryopumps. Hence, it is time to switch to gravity circulation loop working mode. That is to say, by switching valves, the two phase flow fluid can return to 1.2 m3 tank successfully. At the same time, the temperature of LN\textsubscript{2} panel in the cryopump is maintained in the required temperature range.

4. Warming up

When the cryopumps stop working, cryopumps need to be warmed up to ambient temperature.

V. COMMISSIONING TEST RESULTS AND ANALYSIS

Gravity circulation loop system experienced two tests in all. The control software interface including the flow chart is shown in Fig. 5. Fig. 6 shows the graph of panels’ cooling curves in four cryopumps. Fig. 7 shows the graph of panels’ warming up curves in four cryopumps. The results show that gravity circulation loop system can cool down four cryopumps to 100 K no longer than 1 hour, and it can warm up four cryopumps from 100 K to 300 K no longer than 1 hour as well. Moreover, the system has the function of automatic supplying...
LN\textsubscript{2} and automatic liquid level control of LN\textsubscript{2} tank, which saves the human resources.

VI. CONCLUSION

Coupling the numerical model and practical experiences, gravity circulation loop system has been successfully developed and put into the practical use. Firstly, gravity circulation loop system can cool four sets of cryopumps down to as low as 100 K no longer than 1 hour. Secondly, gravity circulation loop system can warm up four cryopumps from 100 K to 300 K no longer than 1 hour as well. Finally, the system can ensure four cryopumps are working simultaneously, with the functions of automatic precooling and automatic warming up. All in all, the development of the gravity circulation loop system was successful, of which technology is domestic leading. More importantly, this technology has been applied in many projects.
REFERENCES

Weiwei Shan: born in P.R. China, 1982, and achieved Master Degree of Cryogenics in Xi’an Jiaotong University, China in 2006. She is working in BISEE in Beijing as a senior engineer.