Increase of Atmosphere CO2 Concentration and Its Effects on Culture/Weed Interaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Increase of Atmosphere CO2 Concentration and Its Effects on Culture/Weed Interaction

Authors: J. I. Santos, A. E. Cesarin, C. A. R. Sales, M. B. B. Triano, P. F. R. B. Martins, A. F. Braga, N. J. Neto, A., A. M. Barroso, P. L. C. A. Alves, C. A. M. Huaman

Abstract:

Climate change projections based on the emission of greenhouse effect gases suggest an increase in the concentration of atmospheric carbon dioxide, in up to 750 ppm. In this scenario, we have significant changes in plant development, and consequently, in agricultural systems. This study aims to evaluate the interaction between culture (Glycine max) and weed (Amaranthus viridis and Euphorbia heterophylla) in two conditions of CO2, 400 and 800 ppm. The results showed that the coexistence of culture with both weed species resulted in a mutual loss, with decrease in dry mass productivity of culture + weeds, in both conditions of CO2. However, when the culture is grown in association with E. heterophylla, total dry mass of culture + weed was smaller at 800 ppm. Soybean was more aggressive in comparison to the A. viridis in both the concentrations of CO2, but not in relation to the E. heterophylla.

Keywords: Plants interaction, increase of [CO2], plants of metabolism C3, Glycine max.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130683

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100

References:


[1] NOAA. Earth System Research Laboratory. Trends in atmospheric carbon dioxide. Available in: www.esrl.noaa.gov. Access in: 20/01/2017.
[2] IPCC, Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[3] L. Q. Jing, Y. Z. Wu, S. T. Zhuang, Y. X. Wang, J. G. Zhu and L. X. Yang, “Effects of CO2 enrichment and spikelet removal on rice quality under open-air field conditions” Journal of Integrative Agriculture, vol. 15, no. 9, pp. 2012–2022, 2016.
[4] E. A. Ainsworth, A. Rogers, A. D. B. Leakey, L. E. Heady, Y. Gibon, M. Stitt and U. Schurr, “Does elevated atmospheric (CO2) alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves?”, Journal of Experimental Botany, vol. 58, pp. 579–591, 2007.
[5] F. M. Damatta, A. Grandis, B. C. Arenque and M. S. Buckeridge, “Impacts of climate changes on crop physiology and food quality”, Food Research International, vol. 43, pp. 1814-1823, 2010.
[6] M. Tausz, S. T. Posch, R. M. Norton, G. J. Fitzgerald, M. E. Nicolas and S. Seneweera, “Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations” Environmental and Experimental Botany, vol. 88, pp. 71– 80, 2013.
[7] B. A. Kimball, K. Kobayashi and M. Bindi, “Responses of agricultural crops to free-air CO enrichment”, Advances in Agronomy, vol. 77, pp. 293–368, 2002.
[8] K. Hikosaka, Y. Onoda, T. Kinugasa, H. Nagashima, N. P. R. Anten and T. Hirose, “Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population”, Ecological Research, vol. 20, no. 3, pp. 243–253, May 2005.
[9] H. Y. Kim, M. Lieffering, K. Kobayashi, M. Okada and S. Miura, “Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2enrichment (FACE) experiment”, Global Change Biology, vol. 9, no. 6, pp. 826–837, June 2003.
[10] C. Potvin and B. R. Strain, “Effects of CO2 enrichment and temperature on growth in two C4weeds, Echinochloa crus-galli and Eleusine indica” Canadian Journal of Botany, vol. 63, no. 9, pp. 1495-1499, 1985.
[11] S. D. Smith, B. R. Strain and T. D. Sharkey, “Effects of CO2 Enrichment on Four Great Basin Grasses”, Functional Ecology, vol. 1, no. 2, pp. 139-143, 1987.
[12] S. J. E. Wand, G. F. Midgley, M. H. Jones, P. S. Curtis, “Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions” Global Change Biology, vol. 5, no. 6, pp. 723–741, Aug 1999.
[13] J. F. Weltzin, R. T. Belote and N. Sanders, “Biological invaders in a greenhouse world: will elevated CO2 fuel plant invasions?”, Frontiers in Ecology and the Environment, vol. 1, no. 3, pp. 146-153, 2003.
[14] L. H. Ziska, “Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide”, Journal of Experimental Botany, vol. 54, pp. 395–404, 2003.
[15] D. T. Patterson, “Weeds in a changing climate”, Weed Science, vol. 43, pp. 685–700, 1995.
[16] D. T. Patterson, J. K. Westbrock, R. J. V. Joyce, P. D. Lingren and J. Rogasik, “Weeds, insects and diseases”, Climate Change, vol.43, pp.711-727, 1999.
[17] R. P. Rigoli, D. Agostinetto, C. E. Schaedler, T. Dal Magro and S. P. Tironi, “Relative competitive ability of wheat (Triticum aestivum) intercropped with Italian ryegrass (Lolium multiflorum) or wild radish (Raphanus raphanistrum)”, Planta Daninha, vol. 26, no. 1, pp. 93-100, 2008.
[18] T. Dal Magro, P. Soldatelli, D. Agostinetto and L. Vargas, “Supressão da dormência de sementes de capim pé de galinha (Eleusine indica) (Published Conference Proceedings style)”, in Proc. 27th Brazilian Weed Science Conf., Ribeirão Preto, 2010, pp. 1177-1181.
[19] M. A. Bianchi, N. G. Fleck and F. P. Lamego, “Proportion among soybean and competitor plants and the relations of mutual interference”, Ciência Rural, vol. 36, no. pp. 1380-1387, 2006.
[20] S. Radosevich, J. Holt and C. Ghersa, “Weed ecology: implications for management”. 2nd ed. New York: Willey, 1997, ch. 6.
[21] C. J. T. Spitters, “On descriptive and mechanistic models for inter-plant competition, with particular reference to crop-weed interaction”. In: R. Rabbinge, J. Goudriaan, H. Van Keulen, F. W. T. P. De Vries and H. H. Van Laar, Theoretical production ecology: reflections and prospects, 1990, pp. 217-236.
[22] C. T. Wit, “On competition”, Verslagen Landbouwkundig Onderzoek., vol. 66, no. 8, pp. 182, 1960.
[23] D. Agostinetto, L. Galon, P. V. D. Moraes, R. P. Rigoli, S. P. Tironi and L. E. Panozzo, “Relative competitivity between flooded rice cultivars and Echinochloa spp.”, Planta Daninha, vol. 26, no. 4, pp. 757-766, 2008.
[24] R. D. Cousens and P. O’Neil, “Density dependence in replacement series experiments”, Oikos vol. 66, pp. 347–352, 1993.
[25] J. L. Harper, “Population Biology of Plants”, London: Academic Press, 1977. 892p.
[26] L. Taiz and E. Zeiger, “Plant physiology”. 4th ed. Sunderland: Sinauer Associates, 2006, ch. 9.
[27] Q. Zeng, B. Liu, B. Gilna, Y. Zhang, C. Zhu, H. Ma, J. Pang, G. Chen and J. Zhu, “Elevated CO2 effects on nutrient competition between a C3 crop (Oryza sativa L.) and a C4 weed (Echinochloa crusgalli L.) nutrient cycling”, Agroecosystems, vol. 89, pp. 93–104, 2011.
[28] C. Zhu, Q. Zeng, L. H. Ziska, J. Zhu, Z. Xie and G. Liu, “Effect of nitrogen supply on carbon dioxide-induced changes in competition between rice and barnyardgrass (Echinochloa crusgalli)”, Weed Science, vol. 56, pp. 66–71, 2008.