Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures

Authors: Hanaa M. M. El-Khayat, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hanan S. Gaber, Hoda, M. A. Abu Taleb, Hassan E. Flefel

Abstract:

Snails are considered as suitable diagnostic organisms for heavy metal–contaminated sites. Biomphalaria alexandrina snails are used in this work as pollution bioindicators after exposure to chemical mixtures consisted of heavy metals (HM); zinc (Zn), copper (Cu) and lead (Pb); and persistent organic pollutants; Decabromodiphenyl ether 98% (D) and Aroclor 1254 (A). The impacts of these tested chemicals, individual and mixtures, on liver and kidney functions, antioxidant enzymes, complete blood picture, and tissue histology were studied. Results showed that Cu was proved to be the highly toxic against snails than Zn and Pb where LC50 values were 1.362, 213.198 and 277.396 ppm, respectively. Also, B. alexandrina snails exposed to the mixture of HM (¼ LC5 Cu, Pb and Zn) showed the highest bioaccumulation of Cu and Zn in their whole tissue, the most significant increase in AST, ALT & ALP activities and the highest significant levels of total protein, albumin and globulin. Results showed significant alterations in CAT activity in snail tissue extracts while snail samples exposed to most experimental tests showed significant increase in GST activity. Snail samples that exposed to HM mixtures showed a significant decrease in total hemocytes count while snail samples that exposed to mixtures containing A & D showed a significant increase in total hemocytes and Hyalinocytes. Histopathological alterations in snail samples exposed to individual HM and their mixtures for 4 weeks showed degeneration, edema, hyper trophy and vaculation in head-foot muscle, degeneration and necrotic changes in the digestive gland and accumulation in most tested organs. Also, the hermaphrodite gland showed mature ova with irregular shape and reduction in sperm number. In conclusion, the resulted damage and alterations in B. alexandrina studied parameters can be used as bioindicators to the presence of pollutants in its habitats.

Keywords: Biomphalaria, Zn, Cu, Pb, AST, ALT, ALP, total protein albumin, globulin, CAT and Histopathology.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1128287

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250

References:


[1] P.D. Abel, “Water Pollution Biology”: Taylor and Francis, London, 1996.
[2] S.M. Mandaville, “Benthic macroinvertebrates in freshwaters-taxa tolerance values, Metrics, and protocols project H-1, soil & water conservation society of metro halifax. Synopses”: http://chebucto.ca/Science/SWCS/ SWCS.html, 2002.
[3] R. Gadzała-Kopciuch, B. Berecka, J. Bartoszewicz and B. Buszewski, “Some considerations about bioindicators in environmental monitoring”: Pol. J. Envir. Stud. vol.13, no. 5, pp. 453–462, 2004.
[4] S.M. Abou El Ella and T.A. El Samman, “Ecosystem status of the north part of Lake Nubia, Sudan”: African J. Biol. Sci., vol. 6, no.2, pp. 7-21, 2010.
[5] I. De Gregori, H. Pinochet, D. Delgado, N. Gras and L. Maunoz, “Heavy metals in Bivalve Mussels and their habitats from different sites along the children coast”: Bull. Environ. Contam. Toxicol., vol. 52, pp. 261- 268, 1994.
[6] M.N. Rashed, “Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution” Environ. Monito. Assess., vol. 68, pp. 75-89, 2001.
[7] J.E. Goodman,” Neurodevelopmental effects of decabromodiphenyl ether (BDE-209): and implications for the reference dose”: Regul. Toxicol. Pharmacol., vol. 54, pp. 91–104, 2009.
[8] J.H. Christensen and J. “Platz, “Screening of polybrominated diphenyl ethers in blue mussels, marine and freshwater sediments in Denmark”: J Environ Monit, vol. 3, pp. 543–547, 2001.
[9] S.C. Lema, I. Schultz, N. Scholz, J. Incardona, P. Swanson, “Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47)” Aquat. Toxicol., vol. 82, pp. 296–307, 2007.
[10] S.C. Lema, I. Schultz, N. Scholz, J. Incardona, P. Swanson, “Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47)”: Aquat. Toxicol., vol. 82, pp. 296–307, 2007.
[11] A.F.H. Ter Schure, P. Larsen and C. Agrell, “Atmosphereic transport of polybrominated diphenyl ethers and polybrominated biphenyls to the Baltic Sea”: Environ. Sci. Technol., vol. 38, pp. 1282–1287, 2004.
[12] R.J. Law, C.R. Allchin, J. de Boer, A. Covaci, D. Herzke, et al., “Levels and trends of brominated flame retardants in the European environment”: Chemosphere, vol. 64, pp. 187–208, 2006.
[13] USEPA (United States Environmental Protection Agency), “An exposure assessment of polybrominated diphenyl ethers”: Washington, DC: USEPA, p. 378, 2010.
[14] R. Laskowski and S.P. Hopkin, “Accumulation of Zn Cu, Pb and Cd in the garden snails, (Helix aspersa aspersa): implication for predators”: Environ. Pollut., vol. 91, pp. 289–297, 1996.
[15] F. Pihan, and A. de Vaulfleury, “The snail as a target organism for the evaluation of industrial waste dump contamination and the efficiency of its remediation”: Ecotoxicol. Environ. Saf., vol. 46, pp. 137–147, 2000.
[16] K.M. Swaileh, N. Rabay’a, R. Salim, A. Ezzzughayyar and A.A. Rabbo, “Concentrations of heavy metals in road side soils,plants, and land snails from the West Bank, Palestein”: J. Environ. Sci. Health A., vol. 36, no. 5, pp. 765–778, 2001.
[17] A.T. Abd Allah, M.Q. Wanas and T. Thompson, “Dissolved heavy metals, lead, cadmium and mercury, accumulate in the body of the schistosome vector, Biomphalaria glabrata Gastropoda: Pulmonata”: J. Moll. Stud., vol. 69, pp. 35–41, 2003.
[18] M.M. Ibrahim “Energy allocation patterns in Biomphalaria alexandrina snails in response to cadmium exposure and Schistosoma mansoni infection”: Exp. Parasitol., vol. 112, pp. 31–36, 2006.
[19] L. Moolman, J.H.J. Van Vuren and V. Wepener, “Comparative studies on the uptake and effects of cadmium and zinc on the cellular energy allocation of two freshwater gastropods”: Ecotoxicol. Environ. Saf., vol. 68, pp. 443–450, 2007.
[20] H.M.M. El-Khayat, K.M.A. Mahmoud, H.S. Gaber, H. Abdel-Hamid and H.M.A. Abu Taleb, “Studies on the effect of pollution on Lake Manzala ecosystem in Port-Said, Damietta and Dakahlia Governorates, Egypt”: J. Egypt. Soc. Parasitol. (JESP), vol. 45, no. 1, pp. 155-168, 2015.
[21] A. Gomot, L. Gomot, S. Boukraa and S. Bruckert, “Influence of soil on the growth of the land snail Helixaspersa. An experimental study of the absorption route for the stimulating factors”: J. Moll. Stud., vol. 55, pp. 1–8, 1989.
[22] G. Blackmore, “Field evidence of metal transfer from invertebrate prey to an intertidal predator, Thais clavigera (gastropoda: muricidae)” Estuar. Coast. Shelf Sci. vol. 51, pp. 127–139, 2000.
[23] P. Laszczyca, M. Augustyniak, A. Babczynska, K. Bednarska, A. Kafel, P. Migula, G. Wilczek, I. Witas “Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland)”: Environ. Int., vol. 30, p. 901, 2004.
[24] H.M.M. El-Khayat, H. Abdel-Hamid, H.S. Gaber, K.M.A. Mahmoud and H. Flefel, “Snails and fish as pollution biomarkers in Lake Manzala and laboratory A: Lake Manzala snails”: Fish. Aquacul. J., Vol, 6, no. 4, 1000153, 2015.
[25] A. Abdel Kader, F. Ramzy and A. Tantawy, “Evaluation of Molluscicidal and in vitro schistosomicidal activity of butanol extract of the plant Agave filifera. Egypt”: J. Biomed. Sci., vol. 16, pp. 53-67, 2004.
[26] World Health Organization (WHO), “Molluscicide screening and evaluation”: Bull. WHO., vol. 33, pp. 567-581, 1965.
[27] J. T. Litchfield and F. A. Wilcoxon, “A simplified method of evaluating dose-effect experiments”: J. Pharmacol. Exp. Ther. Vol. 96, pp. 99-113, 1949.
[28] S. Reitman and S. Frankel “A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases”: Am. J. Clin. Pathol., vol. 28, pp. 56-63, 1957.
[29] N.W. Tietz, “Clinical Guide to Laboratory Tests” 3rd ed., WB Saunders Co., Philadelphia, USA, ISBN-10: 072165035X, pp. 622-626, 1995.
[30] A. Michelson, "Specificity of haemolymph antigens in taxonomic discrimination of medically important snails" J Parasitol., vol. 52, pp. 466-472, 1966.
[31] J.D. Bancroft and A. Stevens, “Theory and Practice of Histological Techniques” 4th ed. Edinburgh: Churchill Livingstone, p.766, 1996.
[32] M.A. Radwan, K.S. El-Gendy and A.F. Gad, “Biomarkers of oxidative stress in the land snail, theba pisana for assessing ecotoxicological effects of urban metal pollution”: Chemosphere, vol. 79, p. 40, 2010.
[33] E. Pinto, T.C.S. Sigaud-Kutner, M.A.S, Leitao, O.K. Okamoto, D. Morse and P. Colepicolo, “Heavy metal-induced oxidative stress in algae”: J. Phycol., vol. 39, p. 1008, 2003.
[34] M. Valko, H. Morris and M.T.D. Cronin, “Metals, toxicity and oxidative stress”: Curr. Med. Chem., vol.12, p. 1161, 2005.
[35] R. Chandran, A.A. Sivakumar, S. Mohandass and M. Aruchami, “Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica”: Comp. Biochem. Physiol. C., vol. 140, p. 422, 2005.
[36] C. Manzl, G. Krumschnabel, P.J. Schwarzbaum and R. Dallinger, “Acute toxicity of cadmium and copper in hepatopancreas cells from the Roman snail (Helix pomatia)”: Comp. Biochem. Physiol. C., vol. 138, p. 45, 2004.
[37] R. Laskowski and S.P. Hopkin “Accumulation of Zn, Cu, Pb and Cd in the garden snail Helix aspersa” Ecotoxicol. Environ. Saf., vol. 34, p. 59, 1996.
[38] A. Beeby and L. Richmond, “Magnisium and regulation of lead in three populations of the garden snail Cantareus asperses”: Environ. Poll., vol. 158, p. 2288, 2010.
[39] G.R. Ramos-Vasconcelos, L.A. Cardoso and M. Hermes-Lima, “Seasonal modulation of free radical metabolism in estivating land snails Helix aspersa”: Comp. Biochem. Physyol. C., vol. 140, p. 165, 2005.
[40] A. Nowakowska, G. Swiderska-Kolacz, J. Rogalska and M. Caputa, “Antioxidants and oxidative stress in Helix pomatia snails during estivation”: Comp. Biochem. Physiol. C., vol. 150, p. 481, 2009.
[41] A. Nowakowska, M. Caputa and J. Rogalska, “Natural aestivation and antioxidant defense in Helix pomatia: Effect of acclimation to external conditions”: J. Moll. Stud., vol. 76, p. 354, 2010.
[42] R. Chandran, A.A. Sivakumar, S. Mohandass and M. Aruchami, “Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica”: Comp. Biochem. Physiol. C., vol. 140, p. 422, 2005.
[43] K.S. El-Gindy, M.A. Radwan and A.F. Gad, “In vivo evaluation of oxidative stress biomarkers in the land snail, Theba pisana exposed to copper-based pesticides”: Chemosphere, vol. 77, p. 339, 2009.
[44] C. Menta and V. Parisi, “Metal concentrations in Helix pomatia, Helix aspersa and Arion rufus: Acomparative study”: Environ. Poll., vol. 115, p. 205, 2001.
[45] A. Nowakowska, T. Łaciak and M. Caputa, “Organ Profiles of the Antioxidant Defence System and Accumulation of Metals in Helix aspersa Snails”: Pol. J. Environ. Stud., vol. 21, no. 5, pp. 1369-1375, 2012.
[46] H.M.M. El-Khayat and N. Abu Zikri, “Biochemical situation in Biomphalaria alexandrina infected with Schistosoma mansoni during twelve weeks post infection” J. Egypt. Ger. Soc. Zool., vol. 43 (A), pp. 57-75, 2004.
[47] R. Mohamed, “Impact of profenophos (pesticide) on infectivity of Biomphalaria alexandrina snails with schistosoma mansoni miracidia and on their physiological parameters”: Open J Ecol, vol. 1, no. 2, pp. 41-47, 2011.
[48] A.M. Mohamed, M.A. El-Emam, G.Y. Osman, H. Abdel-Hamid and R.E.M. Ali, “Biological and biochemical responses of infected Biomphalaria alexandrina snails with Schistosoma mansoni post exposure to the pesticides Basudin and Selecron and the phytoalkaloid Colchicine”: J. Evol. Biol. Res., vol. 4, no. 2, pp. 24-32, 2012.
[49] W. Becker, “Metabolic interrelationships of parasitic trematodes and molluscs; especially Schistosoma mansoni in Biomphalaria glabrata”: Z. Parasitenkd., vol. 63, pp. 101–111, 1980.
[50] M.H. Bisop, J.L. Dubenn-Engelkiry and M.D. Fody, “Non protein nitrogen” in Clinical Chemistry, Principles, Procedures, Correlations, 3rd ed. Publisher, 227 East Washington Square, Philadelphia, PA 19106. chapter 16, pp. 341-356, 1996.
[51] C.C. Mello-Silva, M.C. de Vasconcellos, J.C.B. Bezerra, M.L.A. Rodrigues and J,. Pinheiro, “The influence of exposure to Euphorbia splendens var. hislopii latex on the concentrations of total proteins and nitrogen products in Biomphalaria glabrata infected with Schistosoma mansoni”: Acta Tropica, vol. 117, no. 2, 101–104, 2011.
[52] M.R. Mahmoud, H.S. El-Abhar and S. Saleh, “The effect of Nigeila sativa oil against the liver damage induced by Schistosoma mansoni infection in mice”: J. Enthnopharmacol., vol. 79, no. 1, pp. 1-11, 2002.
[53] M. Masaya, H. Yoshinobu, Y. Ai, K. Maki and O. Yasuo, “Determination of cellular levels of nonproteinthiols in phytoplankton and their correlation with susceptibility to mercury”: J. Phycol., vol. 38, no. 5, p. 983, 2002.
[54] N. Grara, A. Atailia, M. Boucenna, F. Khaldi, H. Berrebbah et al., “Effects of Heavy Metals on the Snails Helix aspersa Bioindicators of the Environment Pollution for Human Health”: Int. Conf. Appl. Life Sci., Turkey, 2012.
[55] K.L, Johnson-Davis, C. Fernelius, N.B. Eliason, A. Wilson, S. Beddhu and W.L. “Roberts Blood Enzymes and Oxidative Stress in Chronic Kidney Disease: A Cross Sectional Study”: Ann. Clin. Lab. Sci., vol. 41, no. 4, pp. 331-339, 2011.
[56] F. Regoli, S. Gorbi, D. Fattorini, S. Tedesco, A. Notti, N. Machella, R. Bocchetti, M. Benedrtti and F. Piva, “Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: An integrated approach”: Environ. Health Perspect ., vol. 114, p. 63, 2006.
[57] K. Bislimi, A. Behluli, J. Halili, I. Mazreku and F. Halili, “Impact of Pollution from Kosova’S Power Plant in Obiliq on Some Biochemical Parameters of the Local Population of Garden Snail (Helix Pomatia L.)”: Resources and Environment, vol. 3, no. 2, pp. 15-19, 2013.
[58] D. Sheehan and A. Power, “Effects of seasonality on xenobiotic and antioxidant defence mechanisms of bivalve molluscs”: Comp. Biochem. Physiol. C., vol. 123, p. 193, 1999.
[59] P. Kaminski, N. Kurhalyuk and M. Szady-Grad, “Heavy metal-induced oxidative stress and changes in physiological process of free radical in the blood of white stocrk (Ciconia ciconia) chicks in polluted areas”: Pol. J. Environ. Stud., vol. 16, p. 555, 2007.
[60] I.B. Helal, M.H. ELMehlawy, E.T. Rizk and G.M. EL-Khodary, “Effect of Euphorbia peplus plant extract and the antihelmenthic prazequantel on the defence system of Biomphalaria alexandria snail. Egypt”: J. Aqaat. Biol. & Fish., vol. 7, no. 4, pp. 501- 505, 2003.
[61] C.T. Wolmarans and E. Yssel, “Biomphalaha glahrata: Influence of selected abiotic factors on leukocytosis”: J. Invertebr. Pathol., vol. 57, pp. 10-14, 1988.
[62] S.S. Koprucu, K. Koprucu and M.S. Urail, “Acute toxicology of synthetic pyrethroid deltamethrin to fingerling European catfish (Silirus glanis L.)”: Bull. Environ. Contaminat. Toxicol., vol. 76, pp. 59-65, (2006).
[63] A.A. Otitoloju, D.O. Ajikobi and R.I. Egonmwan, “Histopathology and Bioaccumulation of Heavy Metals (Cu & Pb) in the Giant land snail, Archachatina marginata (Swainson)”: Open Environ Poll. Toxicol. J., vol. 1, pp. 79-88, 2009.
[64] G.D. Stentiford, and S.W. Feist, “A histopathological survey of shore crab (Carcinusmaenas) and brown shrimp (Crangoncrangon) from six estuaries in the United Kingdom”: J Invert Pathol. Vol. 88, pp. 136-46, 2005.
[65] S.S. Hamed, N.E. Abdelmeguied, A.E. Essawy, M.A. Radwan and A.E. Hegazy, “Histological and ultrastuctural changes induced by two carbamate molluscicides on the digestive gland of Eobania vermiculata”: J. Biol. Sci. vol. 7, pp. 1017-1037, 2007.
[66] M.A. Radwan, A.E. Essawy, Abdelmeguied, S.S. Hamed and A.E. Ahmed, “Biochemical and histological studies on the digestive gland of Eobania vermiculata snails treated with carbamate pesticides”: Pest. Biochem. Physiol., vol.90, pp. 154-167, 2008.
[67] W.S. Hasheesh, M.A.S. Marie, F.A.A. El-Deeb and S.S.M. Sayed, “Impact of Asparagus densiflours and Oreopanax guatemalensis plants and Difenoconazole Fungicide on biochemical parameters of Biomaphalaria alexandrina snails”: Aust. J. Basic appl. Sci., vol. 5, no. 12, pp. 366-378, 2011.
[68] S.A. Hamlet, S. Bensoltane, M. Djekoun, F. Yassi and H. Berrebbah, “Histological changes and biochemical parameters in the hepatopancreas of terrestrial gastropod Helix aspersa as biomarkers of neonicotinoid insecticide exposure”: Afr. J. Biotechnol. vol. 11, no. 96, pp. 16277-16283, 2012.
[69] A.S. Tompa, “Land snails (Stylommatophora)” in The Molluscs, Eds A.S. Tompa, N.H. Verdonk, and J.A.M.van den Biggelaar, Academic Press, Orlando, chapter 7, pp. 47-140, 1984.
[70] R.I. Egonmwan, “Gross Morphology and ultrastructurral study of albumen gland of the land snail Archachatina marginata ovum (Pfeiffer) (Pulmonata: Achatinidae)”: Pakistan J. of Biol. Sci. vol.10, no. 2, pp. 322-325, 2007.
[71] E.T. Rizk, “Schistosomiasis control: Evaluations of the molluscicidal activity of a plant extract Sesbania sesban against Biomaphlaria alexandrina”: J Egypt. Germ. Soc. Zool., vol. 27, pp. 91-107, 1998.
[72] F.N. Heiba, I.M. Al-Sharkawy and A.A. Al-Batal, “Effects of the insecticide, lannate, on the land snails, Eopania vermiculata andMonacha contiana, under laboratory conditions”: J. Biol. Sci., vol. 2, pp. 8-13, 2002.
[73] F. El-Feky, H.A. Raafat and H. Kamal “Physiological and histopathological effects of tributyletin (TBT) on Lymnaea natalensis and Physa acuta”: Egypt. J. Hospit. Med., vol. 37, pp. 610-620, 2009.
[74] V.K. Kanapala and S.P. Arasada, “Histopathological Effect of Paraquat (Gramoxone) on the Digestive Gland of Freshwater Snail Lymnaea luteola (Lamarck: 1799) (Mollusca: Gastropoda)”: Int J Sci Res Environ Sci, vol. 1, no. 9, pp. 224-230, 2013.
[75] L. Hernadi and A. Vehovszky, “Ultrastructural biochemical and electrophysiological cahges induced by 5,6- dihydroxytryptamine in the CNS of the snail Helix pomatia L.”: Brain Res., Vol. 578, pp. 221-234, 1992.
[76] H.H. Boer, C.M. Moorer-van, L.J. Muller, B. Kiburg, J.B. Vermorken and J.J. “Heimans Ultrastructural neuropathological effect of taxol on neuronsof the fershwater snail Lymnaea stangnalis”: J. Neuro-Oncel., 17, pp. 49-57, 1995.
[77] M. Wiemann, W. Wittkowaski, U. Altrup and E.J. “Speckmann Alterations of neuronal fibers after epileptic activity induced by pentylenetetrazole: fine structure investigated by calcium cytochemistry and neurobiotin labeling (buccal ganglia, Helix pomatia)”: Cell Tissue Res. Vol. 289, pp. 43-53, 1995.