Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30750
Optical Parametric Oscillators Lidar Sounding of Trace Atmospheric Gases in the 3-4 µm Spectral Range

Authors: Olga V. Kharchenko


Applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3–4 µm is studied in this work. A technique based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS) is developed for lidar sounding of trace atmospheric gases (TAG). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.

Keywords: Atmosphere, DOAS, DIAL, lidar sounding, trace gases, nonlinear crystal

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727


[1] B. I.Vasil’ev, U. M. Mannoun, “IR differential-absorption lidars for ecological monitoring of the environment,” Quantum Electron, vol. 36, no. 9, pp. 801–820, 2006.
[2] V. Mitev, S. Babichenko, J. Bennes et. al. „Mid-IR DIAL for high-resolution mapping of explosive precursors,” Proccceding of SPIE, vol. 8894, 88940S, 2013.
[3] V. D. Burlakov, S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, “Algorithm for retrieval of vertical distribution of ozone from DIAL laser remote measurements,” Optical Memory and Neural Networks (Information Optics), vol. 24, no. 4, pp. 295–302, 2015.
[4] J. A. Sunesson, , A. Apituley, D. P. Swart, “ Differential absorption lidar system for routine monitoring of tropospheric ozone,” Applied Optics, vol. 33, no. 30, pp. 7045–7058, 1994.
[5] E. V. Browell, “Differential absorption lidar sensing of ozone,” Procceeding of the IEEE, vol. 77, no. 3, pp. 419–432, 1989.
[6] T. J. McGee, M. Gross, U. N. Singh et. al. “Improved stratospheric ozone lidar,” Optical Engineering, vol. 34, no. 5, pp. 1421–1430, 1995.
[7] N. S. Higdon, E. V. Browell, P. Ponsardin et. al. “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Applied Optics, vol. 33, no. 27, pp. 6422–6438, 1994.
[8] R. Toriumi, H. Tai, N. Takeuchi, “Tunable solid-state blue laser differential absorption lidar system for NO2 monitoring,” Optical Engineering, vol. 35, no. 8, pp. 2371–2375, 1996.
[9] O. A. Romanovskii, O. V. Kharchenko, and S. V. Yakovlev, “Application of multiwavelength IR lasers for lidar and path measurements of the meteorological parameters of the atmosphere,” Rus. Phys. J, vol. 57, no. 10, pp. 1380–1387, 2015.
[10] U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical-absorption,” J. Geophys. Res, vol. 84, pp. 6329–6335, 1979.
[11] U. Platt, “Differential optical absorption spectroscopy (DOAS),” Air monitoring by spectroscopic techniques. Chemical analysys series, vol. 127, pp. 27–84, 1994.
[12] U. Platt, J. Stutz, Differential optical absorption spectroscopy, Springer-Verlag, New-York, Berlin, Heidelberg, 2008.
[13] M. Douard, R. Bacis, Р. Rambaldi et. al. “Fourier-transform lidar,” Optics Letters, vol. 20, no. 20, pp.2140–2143, 1995.