Volatile Profile of Monofloral Honeys Produced by Stingless Bees from the Brazilian Semiarid Region
Authors: Ana Caroliny Vieira da Costa, Marta Suely Madruga
Abstract:
In Brazil, there is a diverse fauna of social bees, known by Meliponinae or native stingless bees. These bees are important for providing a differentiated product, especially regarding unique sweetness, flavor, and aroma. However, information about the volatile fraction in honey produced by stingless native bees is still lacking. The aim of this work was to characterize the volatile compound profile of monofloral honey produced by jandaíra bees (Melipona subnitida Ducke) which used chanana (Turnera ulmifolia L.), malícia (Mimosa quadrivalvis) and algaroba (Prosopis juliflora (Sw.) DC) as their floral sources; and by uruçu bees (Melipona scutellaris Latrelle), which used chanana (Turnera ulmifolia L.), malícia (Mimosa quadrivalvis) and angico (Anadenanthera colubrina) as their floral sources. The volatiles were extracted using HS-SPME-GC-MS technique. The condition for the extraction was: equilibration time of 15 minutes, extraction time of 45 min and extraction temperature of 45°C. Through the results obtained, it was observed that the floral source had a strong influence on the aroma profile of the honey under evaluation, since the chemical profiles were marked primarily by the classes of terpenes, norisoprenoids, and benzene derivatives. Furthermore, the results obtained suggest the existence of differentiator compounds and potential markers for the botanical sources evaluated, such as linalool, D-sylvestrene, rose oxide and benzenethanol. These reports represent a valuable contribution to certifying the authenticity of those honey and provides for the first time, information intended for the construction of chemical knowledge of the aroma and flavor that characterize these honey produced in Brazil.
Keywords: Aroma, honey, semiarid, stingless, volatiles.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1125027
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451References:
[1] Karabagias. I. K.; Badeka. A.; Kontakos. S.; Karabournioti. S.; Kontominas. M. G. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles. physicochemical parameters and chemometrics. Food Chemistry. v. 146. p. 548–557. 2014.
[2] Manyi-Loh. C. E.; Ndip. R.; Clarke. A. M. Volatile Compounds in Honey: A Review on Their Involvement in Aroma. Botanical Origin Determination and Potential Biomedical Activities. International Journal of Molecular Sciences. v. 12. p. 9514-9532. 2011.
[3] Santos. C. S.; Ribeiro. A. S. Apicultura uma alternativa na busca do desenvolvimento sustentável. Revista Verde de Agroecologia e Desenvolvimento Sustentável. v. 4. p. 01-06. 2009.
[4] Sousa. J. M. B.; Souza. E. L.; Marques. G.; Benassi. M. T.; Gullón. B.; Pintado. M. M.; Magnani. M. Sugar profile. physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT-Food Science Technology. v. 65. p. 645–651. 2016.
[5] Silva, T. M. S.; Santos, F. P.; Evangelista-Rodrigues, A.; Silva, E. M. S.; Silva, G. S.; Novais, J. S. Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. Journal of Food Composition and Analysis, p. 29, p. 10-18, 2013.
[6] Adams. R. P. Identification of essential oil components by gas chromatography/mass spectrometry. fourth ed.. Illinois. USA. 2008.
[7] Rivellino. S. R.; Hantao. L.W.; Risticevic. S.; Carasek. E.; Pawliszyn. J.; Augusto. F. Detection of extraction artifacts in the analysis of honey volatiles using comprehensive two-dimensional gas chromatography. Food Chemistry. v. 141. p. 1828–1833. 2013
[8] Jerkovic I. Marek P. Giovanni CI. Sarolic M. Phytochemical and physical analysis of Polish willow (Salix spp.) honey: Identification of the marker compounds. Food Chemistry. v. 145. p. 8–14. 2014.
[9] Biasoto, A. C. T.; Netto, F. M.; Marques, E. J. N.; Silva, M. A. A. P. Acceptability and preference drivers of red wines produced from Vitis labrusca and hybrid grapes. Food Research International, v. 62, p. 456-466, 2014.
[10] Barra. M. P.G.; Ponce-Díaz. M. C.; Venegas-Gallegos. C. Volatile compounds in honey produced in the Central Valley of Ñuble Province. Chile. Journal of Agricultural Research. v. 70. p. 75-84. 2010.
[11] Casto-Vásquez L. Pérez-Coelho M. S. Cabezudo M. D. Analysis of Volatile Compounds of Rosemary Honey: Comparison of Different Extraction Techniques. Chromatographia. v. 57. p. 227-233. 2003.
[12] Soria. A.C.; Martinez-Castro. I.; Sanz. J. Analysis of volatile composition of honey by solid phase microextraction and gas chromatography-mass spectrometry. Journal of Separation Science. vol. 26. p. 793–801. 2003.
[13] Špánik. I.; Pažitná. A.; Šiška. P.; Szolcsányi. P. The determination of botanical origin of honeys based on enantiomer distribution of chiral volatile organic compounds. Food Chemistry. v. 158. p. 497-504. 2014.
[14] Moreira, R. F. A., et al. Flavor composition of cashew (Anacardium occidentale) and Marmeleiro (Croton Species) honeys. Journal of Agricultural and Food Chemistry, vol. 50, p. 7616–7621, 2002.
[15] Alissandrakis. E. et al. Aroma investigation of unifloral Greek citrus honey using solid-phase microextraction coupled to gas chromatographic–mass spectrometric analysis. Food Chemistry. v. 100. p. 396–404. 2007.
[16] Castro-Vázquez L. Díaz-Maroto MC. Pérez-Coello M. S. Aroma composition and new chemical markers of Spanish citrus honeys. Food Chemistry. v. 103. p. 601–6. 2007.
[17] Castro-Vazquez. L.; Diaz-Maroto. M. C.; Torres. C.; Perez-Coello. M. S. Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Research International. v. 43. p. 2335–2340. 2010.
[18] Babu. K. G. D.; Singh. B.; Joshi. V. P.; Singh. V. Essential oil composition of Damask rose (Rosa damascena Mill.) distilled under different pressures and temperatures. Flavour and Fragance Journal. v. 17. p. 136–140. 2002.
[19] Taneja. S. C.; Sethi. V.K.; Andotra. S.S.; Koul. S.; Qazi. G.N. Rose oxides: a facile chemo and chemo-enzymatic approach. Synthetic Communication. v. 35. p. 2297–2303. 2005.
[20] Nonato. F. R.; Santana. D. G.; Melo. F. M.; Santos. G. G. L.; Brustolim. D.; Camargo. E. A.; Sousa. D. P.; Soares. M. B. P.; Villarreal. C. F. Anti-inflammatory properties of rose oxide. International Immunopharmacology. v. 14. p. 779-784. 2012.
[21] Alsters. P. L. Jary. W.; Nardello-Rataj. V. R.; Aubry. J. M. “Dark” singlet oxygenation of β-citronellol: a key step in the manufacture of rose oxide. Organic Process Research & Development. v. 14. p. 259–262. 2010.
[22] Blank. K. H.; Fischer. W.; Grosch. Z. Intensive neutral odorants of linden honey. Differences from honeys of other botanical origin. Lebensm Unters Forsch. v. 189. p. 426-428. 1989.
[23] Santos. A.; Moreira. R. F. A.; De Maria. C. A. B. Study of the principal constituents of tropical angico (Anadenanthera sp.) honey from the atlantic forest. Food Chemistry. v. 171. p. 421-425. 2015.
[24] Matos. L. M. C. et al. Aroma compounds in morrão de candeia (Croton sp.) and assa-peixe (Vernonia sp.) honey. Italian Journal Food Science.v. 14. p. 267-278. 2002.
[25] Castro-Vázquez. L.; Díaz-Maroto MC. Pérez-Coello M. S. Changes in the volatile fractions and sensory properties of Heather honey during storage under different temperatures European Food Research Technology. v. 235. p. 185–193. 2012.