Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30127
Present and Future Climate Extreme Indices over Sinai Peninsula, Egypt

Authors: Mahmoud Roushdi, Hany Mostafa, Khaled Kheireldin


Sinai Peninsula and Suez Canal Corridor are promising and important economic regions in Egypt due to the unique location and development opportunities. Thus, the climate change impacts should be assessed over the mentioned area. Accordingly, this paper aims to assess the climate extreme indices in through the last 35 year over Sinai Peninsula and Suez Canal Corridor in addition to predict the climate extreme indices up to 2100. Present and future climate indices were analyzed with using different RCP scenarios 4.5 and 8.5 from 2010 until 2100 for Sinai Peninsula and Suez Canal Corridor. Furthermore, both CanESM and HadGEM2 global circulation models were used. The results indicate that the number of summer days is predicted to increase, on the other hand the frost days is predicted to decrease. Moreover, it is noted a slight positive trend for the percentile of wet and extremely days R95p and R99p for RCP4.5 and negative trend for RCP8.5.

Keywords: Climate change, extreme indices, RCP, Sinai Peninsula.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122


[1] C. K. Folland, T. R. Karl, J. R. Christy, R. A Clarke, G. V. Gruza, J. Jouzel, M. E.Mann, J. Oerlemans, M. J Salinger., S. W. Wang, “Observed climate variability and change,” In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, 2001, pp. 99–181.
[2] A. M. F. Abdel-Kader, “Geological studies on southern Sinai using Satellite data,” Ph.D. Thesis, Geol Dept Fac Sci, Mansoura Univ. Egypt, 1990.
[4] L. V. Alexander, et al., “Global observed changes in daily climate extremes of temperature and precipitation,” J. Geophys. Res., 111, D05109, 2006, doi:10.1029/2005JD006290.
[5] X. Zhang, F. Yang - Climate Research Branch Environment Canada, 2004 -
[6] IPCC, AR5 WG1, Stocker, T.F. et al., eds., Climate Change 2013, “The Physical Science Basis,” Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), 2013.
[7] G. Wayne, “The Beginner’s Guide to Representative Concentration Pathways,” skeptical science, 2013.
[8] L. E. Clarke, J. A. Edmonds, H. .D Jacoby, H. Pitcher, J. M. Reilly, R. Richels, “Scenarios of greenhouse gas emissions and atmospheric concentrations,” Sub-report 2.1a of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research, Washington DC, 2007.
[9] S. J. Smith, T. M. L. Wigley, “MultiGas forcing stabilization with minicam,” The Energy Journal Special issue #3, 2006, pp. 373–392.
[10] M. Wise, K. Calvin, A. Thomson, L. Clarke, B. Bond-Lamberty, R. Sands, S. J. Smith, A. Janetos, J. Edmonds, “Implications of limiting CO2 concentrations for land use and energy,” Science 324, 2009, pp. 1183-1186.
[11] K. Riahi, A. Grübler, N. Nakicenovic, “Scenarios of long-term socio-economic and environmental development under climate stabilization,” Technol Forecast Soc Chang 74, pp. 887–935, 2007.
[12] J. Rogelj, , M. Meinshausen, and R. Knutti, “Global warming under old and new scenarios using IPCC climate sensitivity range estimates,” Nature Clim. Change, 2(4), 2012, pp. 248-253.
[13] climdex.shtml
[14] PCMDI,
[15] ESG, http://www.
[16] A., K. K. Terando,, and W. E. Easterling, “Probabilistic projections of agro-climate indices in North America,” J. Geophys. Res., 117, D08115, doi:10.1029/2012JD017436, 2012.
[17] J. A. Patz, D. Campbell-Lendrum, T. Holloway, “Impact of regional climate change on human health,” Nature 438:310–317, 2005.
[18] M. G. Weisskopf, H. A. Anderson, B. K. Foldy, T. J. Hanrahan, “Heat wave morbidity and mortality, Milwaukee, Wis. 1999 vs 1995: an improved response?,” Am J Public Health 92, 2002, pp. 830 – 833.
[19] P., L. V. Frich,. P. Alexander, B. Della-Marta, M. Gleason, A.Haylock, K. Tank, and T. Peterson, “Global changes in climatic extremes during the 2nd half of the 20th century”, Clim. Res.,19, 2002, pp. 193–212.
[20] S. W. Min, S. H. Cho, Y. Zhou, S. Schroeder, V. Haroutunian, W. W. Seeley, E. J. Huang, Y. Shen, E. Masliah, C. Mukherjee, D. Meyers, P. A. Cole, Ott M, Gan L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron. Sep 23;67(6), 2010 pp. 953-66.
[21] S. K. Min, X. F. W.Zhang, Zwiers, and G. C. Hegerl, “Human contribution to more intense precipitation extremes,” Nature, 470, 2011, pp.378–381.
[22] S. Morak, G. C. Hegerl, and J. Kenyon, “Detectable regional changes in the number of warm nights,” Geophys. Res. Lett.,38, L17703, doi:10.1029/2011GL048531, 2011.
[23] K. E. Trenberth, , “Attribution of climate variations and trends to human influences and natural variability,” WIREs Climate Change, 2, pp. 2011, 925–930, doi:10.1002/wcc.142.
[24] F. W. Zwiers, X. Zhang, and Y. Feng, “Anthropogenic Influence on Long Return Period Daily Temperature Extremes at Regional Scales,” J. Climate, 24, 2011, pp. 881–892.
[25] G. J. van Oldenborgh, L. A. te Raa, H. A. Dijkstra, and S. Y. Philip, Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean, Ocean Sci., 5, pp. 293–301, 2009.
[26] J. Sillmann and M. Croci-Maspoli, Present and future atmospheric blocking and its impact on European mean and extreme climate, Geophysical Research Letters, Vol. 36, L10702, 2009.
[27] M. Hirschi, S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe Nature Geoscience, 4 (1), 2011, pp. 17–21.
[28] D. Seneviratne, M. Lüthi, C. Litschi, Schär Land–atmosphere coupling and climate change in Europe Nature, 443 (7108), 2006, pp. 205–209.