Supramolecular Cocrystal of 2-Amino-4-Chloro-6- Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations
Authors: Nuridayanti Che Khalib, Kaliyaperumal Thanigaimani, Suhana Arshad, Ibrahim Abdul Razak
Abstract:
The 1:1 cocrystal of 2-amino-4-chloro-6- methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) (I) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic C2/c space group, Z = 8, and a = 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å and β = 109.618 (3)°. The presence of unionized –COOH functional group in cocrystal I was identified both by spectral methods (1H and 13C NMR, FTIR) and X-ray diffraction structural analysis. The 2A4C6MP molecule interact with the carboxylic group of the respective 4MBA molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen–bonded motif R2 2(8). The crystal structure was stabilized by Npyrimidine—H⋯O=C and C=O—H⋯Npyrimidine types hydrogen bonding interactions. Theoretical investigations have been computed by HF and density function (B3LYP) method with 6–311+G (d,p)basis set. The vibrational frequencies together with 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of cocrystal I. Theoretical calculations are in good agreement with the experimental results. Solvent–free formation of this cocrystal I is confirmed by powder X-ray diffraction analysis.
Keywords: Supramolecular Cocrystal, 2-amino-4-chloro-6- methylpyrimidine, Hartree-Fock and DFT Studies, Spectroscopic Analysis.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1110257
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023References:
[1] C. Janiak, “A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands,” J. Chem. Soc. Dalton. Trans., pp.3885–3896, 2000.
[2] G. R. Desiraju, “C–HO and other weak hydrogen bond. From crystal engineering to virtual screenin,” Chem. Commun., vol. 24, pp.2995– 3001, 2005.
[3] Ö. Almarsson, M. J. Zaworotko, “Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical cocrystal represent a new path to improved medicines?,” Chem. Commun., pp.1889–1896, 2004.
[4] S. L. Childs, L. J. Chyall, J. T. Dunlap, V. N. Smolenskaya, B. C. Stahly, B. C. Stahly. “Crystal engnineering approach to forming cocrystals of amine hydrochloric with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic and fumaric acid,” J. Am. Chem. Soc., vol.126 (41), pp.13335–13342, 2004.
[5] A. T. M. Serajuddin, “Salt formation to improve drug solubility,” Adv. Drug. Deliv. Rev., vol.59, pp.603–616, 2007.
[6] S. Ebenezer, P. T. Muthiah and R. J. Butcher, “Design of series of isostructural co-crystals with aminopyrimidine: isostructurality through chloro/methyl exchange and studies on supramolecular architectures,” Crystal Growth & Design., vol.11, pp.3579–3592, 2011.
[7] L. H. Schmidt, J. Harrison, R. N. Rossan. D. Vaughan, R. Crosby, “Quantitative aspects of pyrimethamine-sulfonamide synergism,” Am. J. Trop. Med. Hyg., vol.26, pp.837−849, 1977.
[8] B. L. Vallee, D. S. Auld, “Zinc: biological functions and coordination motifs,” Acc. Chem. Res., vol.26, pp.543−551, 1993.
[9] B. R. Baker, D. V. Santi. “Analogs of tetrahydrofolic acid XXIV. Further observations on the mode of pyrimidyl binding to dihydrofolic reductase and thymidylate synthetase by the 2-amino-5-(3- anilinopropyl)-6-methyl-4-pyrimidinol type of inhibitor,” J. Pharm. Sci., vol.54, pp.1252−1257, 1965.
[10] K. Thanigaimani, N. C. Khalib, E. Temel, S. Arshad and I. A. Razak. “New supramolecular cocrystal of 2-amino-5-chloropyridine with 3- methylbenzoic acids: Syntheses, structural characterization, hirshfeld surfaces and quantum chemical investigations,” Journal of molecular structure, vol.1099, pp. 246–256, 2015.
[11] M. G. Takwale and L. M. Pant. “The structure of p-toluic acid,”Acta Cryst. B27, pp. 1152–1158, 1971.
[12] M. Orio, D. A. Pantazis, F. Nesse, “Density functional theory,” Photosynthesis. Res., vol.102, pp.443–453, 2009.
[13] Bruker. SADABS, APEX2 and SAINT. Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.
[14] G. M. Sheldrick, “A Short history of SHELX,” Acta Cryst., A64, pp.112–122, 2008.
[15] A. L. Spek, “Structure validation in chemical crystallography,” Acta Cryst., D65, pp.148–155, 2009.
[16] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[17] J. P. Merrick, D. Moran, L. Radom, “An evaluation of harmonic vibrational frequency scale factors,” J. Phys. Chem A., vol.111, pp.11683–11700, 2007.
[18] M. Atiş, F. Karipchi, B. Sariboğa, M. Taş, H. Çelik, “Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5- chloro-2-hydroxyphenyl) thiourea,” Spectrochimica Acta A., vol. 98, pp.290–301, 2012.
[19] R. Dennington, T. Keith, J. Millam, “GaussView Version 5,” Semichem Inc., Shawnee Mission KS, 2009.
[20] F. H. Allen, “The Cambridge structural database: a quarter of a million crystal structures and rising,” Acta Cryst., B58, pp.380–288, 2002.
[21] C. A. Coulson, “Bond Angles in Nitrogen-containing heterocyclic molecules,” J. Amer. Chem. Soc., vol.85, pp. 5893–5896, 1963.
[22] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, “Tables of bond lengths determined by X-ray and neutron diffraction. Part1. Bond lengths in organic compound,” J. Chem. Soc., Perkin Trans., vol.2, pp.S1–19, 1987.
[23] J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, “Pattern in hydrogen bonding: functionality and graph set analysis in crystal,” Angew. Chem. Int. Ed. Engl., vol.34, pp.1555–1573, 1995.
[24] F. H. Allen, P. R. Raithby, G. P. Shields, R. Taylor, “Probabilities of formation of bimolecular cyclic hydrogen-bonded motifs in organic crystal structures: a systematic database analysis,” Chem. Commun., pp.1043-1444, 1998.
[25] K. Thanigaimani, N. C. Khalib, S. Arshad, I. A. Razak, “4-chloro-6- methoxypyrimidine-2-amine-succinic acid (2/1),” Acta Cryst., E68, pp.o3343, 2012.
[26] K. Thanigaimani, N. C. Khalib, S. Arshad, I. A. Razak, “2, 6-diamino-4- chloropyrimidine-benzoic acid (1/1),” Acta Cryst., E68, pp.o3442– o3443, 2012.
[27] G. S. S. Kumar, A. A. M. Prabhu, N. Bhuvanesh, X. A. V. Ronica, S. Kumaresan, “Molecular structure investigation of organic cocrystals of 1,10-phenanthroline-5,6-dione with aryloxyacetic acid: A combined experimental and theoretical study,” Spectrochimica Acta A., vol.132, pp.465–476, 2014.
[28] H. A. Dabbagh, A. Teimouri, A. N. Chermahini, M. Shahraki, “DFT and ab initio study of structure of dyes derived from 2-hydroxy and 2, 4- dihydroxy benzoic acids,” Spectrochimica Acta A., vol.69, pp.449–459, 2008.
[29] S. Ramalingam, S. Periandy, S. Mohan, “Vibrational spectroscopy (FTIR and FTRaman) investigation using ab initio (HF) and DFT (B3LYP and B3PW91) analysis on the structure of 2-amino pyridine,” Spectrochimica Acta A., vol.77, pp.73–81, 2010.
[30] T. Javavarthanan, N. Sundarageranesan, M. Karabacak, M. Cinar, M. Kurt, “Vibrational spectra, UV and NMR, first order hyperpolarizability and HOMO–LUMO analysis of 2-amino-4-chloro-6-methylpyrimidine,” Spectrochimica Acta A., vol.97, pp.811–824, 2012.
[31] N. Sundaraganesan, B. D. Joshua, C. Meganthan, S. Sebastian, “Vibrational spectroscopic studies supported by HF/DFT calculations of 2, 4, 6-triaminopyrimidine,” Ind. J. Chem., vol.47, pp.821–829, 2008.
[32] D. Sajan, I. Hubert Joe, V. S. Jayakumar, “NIR‐FT Raman, FT‐IR and surface‐enhanced Raman scattering spectra of organic nonlinear optic material: p‐hydroxy acetophenone,” J. Raman Spectrosc., vol. 37, pp.508–519, 2006.
[33] A. V. Trask, J. an de Streek, W. D. Samuel Motherwell, W. Jones, “Achieving polymorphic and stoichiometric diversity in cocrystal formation: Importance of solid-state grinding, powder X-ray structure determination, and seeding,” Cryst. Growth. Des., vol.5(6), pp.2233– 2241, 2005.
[34] D. R. Weyna, T. R. Shattock, P. Vishweshwar, M. Zaworotko, “Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution,” Cryst Growth Des., vol.9(2), pp.1106–1123, 2009
[35] B. Sarma, K. Naba. Nath, R. Balakrishna, Bhogala, and N. Ashwini, “Synthon Competition and Cooperation in Molecular Salts of Hydroxybenzoic Acids and Aminopyridines,” Growth & Design., vol.9 (3), pp.1546–155, 2009.
[36] G. Portalone, M. Colapietro, “Solid–phase molecular recognition of cytosine based on proton–transfer reaction,” J. Chem Cryst., vol.39, pp.193–200, 2009.