Ferrites of the MeFe$_2$O$_4$ System (Me – Zn, Cu, Cd) and Their Two Faces

B. S. Boyanov, A. B. Peltekov, K. I. Ivanov

Abstract — The ferrites ZnFe$_2$O$_4$, CdFe$_2$O$_4$, and CuFe$_2$O$_4$ are synthesized in laboratory conditions using ceramic technology. Their homogeneity and structure are proven by X-Ray diffraction analysis and Mössbauer spectroscopy. The synthesized ferrites are subjected to strong acid and high temperature leaching with solutions of H$_2$SO$_4$, HCl and HNO$_3$. The results indicate that the highest degree of leaching of Zn, Cd and Cu from the ferrites is achieved by use of HCl.

The charging of five zinc sulfide concentrates was optimized using the criterion of minimal amount of zinc ferrite produced when roasting the concentrates in a fluidized bed. The results obtained are interpreted in terms of the hydrometallurgical zinc production and maximum recovery of zinc, copper and cadmium from initial zinc concentrates after their roasting.

Keywords — Hydrometallurgy, inorganic acids, solubility, zinc ferrite.

I. INTRODUCTION

Solid-state reactions are carried out between the oxides of zinc and those of other non-ferrous metals (Cd, Cu, etc.) and Fe$_2$O$_3$ (obtained by oxidation of FeS$_2$, nZnS·mFeS, CuFeS$_2$) during roasting of sulfide zinc concentrates in a fluidized bed furnace (FBF). As a result of these interactions ZnFe$_2$O$_4$ is obtained, as well as ferrites of Cd, Cu, etc. [1]–[4]. The ferrites of Zn, Cd, Cu and mixed ferrites with NiO, MnO, MgO, CoO, ZnO, BaO, etc. combine the properties of dielectrics, semiconductors, ferro-magnets, catalysts and others. The ferrites are used in an impressive range of applications due to their remarkable properties. However, one big disadvantage of ferrites is that they are undesirably among the end products in many processes in metal manufacturing. The ferrites are very stable and poorly soluble compounds [5]. The remarkable properties of ferrites have been studied in detail, and are used in various fields - engineering, industry, medicine and others [6]. Depending on the technology used to obtain them, as well as their chemical composition, crystal structure, and the presence of impurities, ferrites have a high specific electrical resistance, among many other useful properties [7]. In terms of extractive metallurgy and, in particular, of the hydrometallurgical production of zinc, however, the obtaining of these ferrites is one of the most unfavorable processes. This reduces the direct leaching of zinc and leads to an increase in production costs and deterioration of the technical and economic parameters of the leaching and all zinc production. In this context, the aim of this study is to synthesize ZnFe$_2$O$_4$, CdFe$_2$O$_4$, and CuFe$_2$O$_4$ in laboratory conditions, to leach the ferrites with H$_2$SO$_4$, HCl and HNO$_3$, as well as to determine the influence of conditions of leaching and chemical composition of zinc sulfide concentrates on the degree of leaching of non-ferrous metals.

II. EXPERIMENTAL

A. Ceramic Technology

In this study ZnFe$_2$O$_4$, CdFe$_2$O$_4$, and CuFe$_2$O$_4$ were synthesized using ceramic technology.

B. XRD Analysis

The X-ray phase analysis of the ferrites and the concentrates was carried out with a “TUR-M62” apparatus (Dresden, Germany), used for the phase identification.

C. Mössbauer Spectroscopy

Mössbauer spectra (MS) were obtained at 25 °C with a Wissel electromechanical Mössbauer spectrometer (Wissenschaftliche Elektronik GmbH, Germany).

D. Chemical Analysis

The chemical analysis of the samples was performed by inductively coupled plasma (ICP-OES) model iCAP 6300 from Thermo Scientific (England).

Weighting analysis was used to determine the degree of metal leaching in the dissolution of ZnFe$_2$O$_4$, CdFe$_2$O$_4$, and CuFe$_2$O$_4$ in acids according to the difference in mass of the initial ferrite and the residue after leaching.

E. Web-Based Information System

A Web-based information system for the calculation of the chemical compositions of the charges of concentrates was used. It was built on a modular principle using server programming language PHP.

III. RESULTS AND DISCUSSION

A. Synthesis and Leaching

1. Technology

Under laboratory conditions the ferrites ZnFe$_2$O$_4$, CdFe$_2$O$_4$, and CuFe$_2$O$_4$ were synthesized at 1000°C, using a ceramic technology (Fig. 1). The resulting ferrites are single-phase...
samples and possess properties most similar to the ones obtained during the roasting of zinc sulfide concentrates [8].

2. XRD Analysis

The complete process of the solid-state reactions between initial oxides (ZnO, CdO and CuO) and Fe₂O₃ to obtain ferrites was checked by XRD analysis. The resulting XRD patterns are presented in Fig. 2.

Zinc ferrite crystallizes in a cubic structure, and the calculated parameter (a) of the crystal lattice on the basis of the analysis is 8.442 Å. XRD analysis indicates the formation of a spinel structure of CdFe₂O₄. Intense diffraction peaks characterizing single-phase ferrite in cubic structure are present in the XRD patterns. The calculated lattice parameter (a) for CdFe₂O₄ is 8.690 Å. Observed intense diffraction lines of CuFe₂O₄ are typical of a single-phase sample. The calculated lattice parameters (a and c) for the CuFe₂O₄ sample are respectively 8.570 Å and 8.490 Å. Established X-ray diffraction patterns and parameters of the crystal lattice of ferrites are very similar to the parameters presented by other authors [9]–[16].

The results from the X-ray phase analysis show that in the studied zinc concentrates there are six phases typical for all concentrates studied up to now: β-ZnS (a main phase), nZnS.mFeS, FeS₂, CuFeS₂, SiO₂ (α-quartz), and PbS [1].

3. Mössbauer Spectroscopy

The single phase of the obtained ferrites is proved by Mössbauer spectroscopy. The Mössbauer spectra obtained are shown in Fig. 3, and the calculated Mössbauer parameters - in Table I.

<table>
<thead>
<tr>
<th>Phase Components</th>
<th>IS, mm/s</th>
<th>QS, mm/s</th>
<th>H_q, T</th>
<th>FWHM, mm/s</th>
<th>G, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnFe₂O₄</td>
<td>0.34</td>
<td>0.36</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdFe₂O₄</td>
<td>0.37</td>
<td>0.78</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuFe₂O₄</td>
<td>0.36</td>
<td>-0.14</td>
<td>51.5</td>
<td>0.54</td>
<td>49</td>
</tr>
<tr>
<td>CuFe₂O₄ o Sx2- Fe³⁺</td>
<td>0.26</td>
<td>-0.01</td>
<td>48.7</td>
<td>0.51</td>
<td>51</td>
</tr>
<tr>
<td>CuFe₂O₄ o Sx1- Fe³⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The experimental Mössbauer spectrum of ZnFe₂O₄ is a quadrupole doublet. Mathematical processing gives parameters characteristic of ZnFe₂O₄. The iron ions are in the third degree of oxidation and octahedrally coordinated. The quadrupole splitting of ZnFe₂O₄ is 0.36 mm/s [17].

The Mössbauer spectrum of CdFe₂O₄ represents a quadrupole doublet and has parameters characteristic of
CdFe$_2$O$_4$. They are close to those presented in the literature [18]–[20].

The formation of CuFe$_2$O$_4$ is substantial at 650°C and very intensive at 750°C. In the solid phase interaction between CuO and Fe$_2$O$_3$ the most significant influence on the reaction is time. Raising the temperature up to 1000 °C also strongly influences the rate of ferrite formation [21].

The Mossbauer spectrum of CuFe$_2$O$_4$ represents a sextet containing Fe$^{3+}$ (octa) and Fe$^{3+}$ (tetra) with an inverse distribution of ions. CuFe$_2$O$_4$ is a ferrimagnetic spinel.

4. Leaching of Ferrites

Leaching of ZnFe$_2$O$_4$

Fig. 4 shows the degree of leaching of zinc ferrite according to the temperature (25, 55, 75, 85 and 95 °C), with 7, 10 and 15 vol. % solutions of H$_2$SO$_4$, HCl and HNO$_3$ for a time of 30 and 60 min. These conditions were selected based on the industrial technology of zinc calcine leaching.

From the results it is clear that the higher the temperature and the longer the time of treatment, the better the degree of zinc leaching is.

In all leaching conditions up to a temperature of 55 °C the degree of zinc recovery is less than 20%. Raising the temperature above this value significantly affects the extraction process. There is complete dissolution of ferrite at 95 °C with the use of HCl and H$_2$SO$_4$.

When comparing the effects of different acids the following conclusions can be made:

1. The solubility of ZnFe$_2$O$_4$ in HNO$_3$ is significantly lower, regardless of the conditions of leaching.

2. The zinc ferrite is dissolved better in solutions of HCl, compared to solutions of H$_2$SO$_4$, but when using the 7% solutions of both acids, no big difference is observed.

3. With regards to increasing the acid concentration, the degree of leaching of ZnFe$_2$O$_4$ increases more significantly when using solutions of HCl. Almost complete dissolution of ferrite with HCl is obtained at a temperature of 75°C, 15% HCl solution and leaching time 60 min. In order to achieve the same result using H$_2$SO$_4$, with the same leaching time and solution concentration, the temperature must be raised to 95 °C.

4. The results correspond with those obtained by several authors on high-temperature and high-concentration leaching - zinc is recovered by H$_2$SO$_4$ in hydrometallurgical production, while iron is removed through the formation of jarosite, goethite or hematite [22]–[24].

5. Although there are various difficulties that must be overcome in the electrolysis of ZnCl$_2$ (release of Cl$_2$, equipment corrosion, etc.), research in these guidelines continues [25], [26].

Leaching of CdFe$_2$O$_4$

Data in Fig. 5 show the degree of leaching of CdFe$_2$O$_4$ as a function of temperature, acids concentration (7, 10 and 15 vol.%) solutions of H$_2$SO$_4$, HCl and HNO$_3$) and process duration (30 and 60 min). From the results it is clear that increasing both the temperature and the time of treatment leads to an increase in the degree of leaching of cadmium. Regardless of the experimental conditions, the degree of recovery of CdFe$_2$O$_4$ at 25°C is below 20%. Increasing the temperature significantly affects the extraction process. At 75°C, using HCl, complete dissolution of the ferrite is achieved. When using H$_2$SO$_4$, total recovery was achieved at 95°C.

The conclusions that can be drawn on the basis of the effects of different acids are:

1. Using HNO$_3$ to dissolve CdFe$_2$O$_4$ shows no significant results. However, even such results are more satisfactory than those obtained by the dissolution of ZnFe$_2$O$_4$ in the same conditions. The maximum degree of leaching with HNO$_3$ is about 70%.

2. The solubility of CdFe$_2$O$_4$ responds well to the use of HCl and H$_2$SO$_4$. The best results from leaching are achieved using HCl. Even at 95°C and 7% concentration of HCl, after 30 min a complete dissolution of ferrite is achieved. The same result using H$_2$SO$_4$ is only achieved when the time is increased to 60 min.
3. With the increase of acid concentration, the degree of
CdFe₂O₄ leaching considerably increases at lower
temperatures (75 °C and 85 °C).
4. In order to achieve complete dissolution of the ferrite at a
lower temperature using H₂SO₄, it is necessary to increase
acid concentration to 15%, with an extraction time of 60
min.
5. On the basis of the results obtained it can be concluded
that CdFe₂O₄ is more unstable than ZnFe₂O₄.

Leaching of CuFe₂O₄

Fig. 6 presents the degree of leaching of CuFe₂O₄ using 7,
10 and 15% acids concentration for a time of 30 and 60 min

When comparing the effects of different acids the following
conclusions can be drawn:
1. The effect of HNO₃ on the leaching process is weak,
irrespective of the conditions of the experiment.
2. The copper ferrite is better dissolved in solutions of HCl
and H₂SO₄. More significant leaching is achieved by
using HCl. When raising the temperature and increasing
the time of extraction, the use of HCl provides about 20%
more recovery of CuFe₂O₄ than the use of H₂SO₄.
3. Complete dissolution of ferrite is achieved with the use of
HCl, at an elevated temperature of 95 °C and an increased
acid concentration of 15% for a period of 60 min. Under
the same conditions, the maximum degree of leaching of
ferrite with the use of H₂SO₄ is about 80%.
4. On the basis of the results obtained it can be concluded
that CuFe₂O₄ is more stable than ZnFe₂O₄ and CdFe₂O₄.

B. Industrial Study

1. Chemical Analysis of the Zinc Concentrates With
Different Iron Content

The content of Zn and Fe is an important characteristic of
zinc sulfide concentrates used in zinc production. Eighteen
concentrates processed at KCM - SA, Plovdiv (Bulgaria) were
tested in connection with the ferrite formation and
implementation of the process of roasting in fluidized bed
furnace (Fig. 7).
The data presented in Fig. 7 show that 12 concentrates meet the requirement for zinc content greater than 50%. At the same time, 10 of the concentrates have iron content above the upper limit of 8% (Fig. 8). This is the reason that a significant amount of ZnFe₂O₄ is obtained, adversely affecting the leaching of zinc [27].

All Mössbauer spectra contain quadrupole doublets, and concentrates 1 and 4 contain sextet components too. In all 5 concentrates data indicate the presence of a mixed zinc-iron sulfide corresponding to the marmatite phase. Based on these results, it can be claimed that almost the entire amount of iron (as Fe₂O₃) in the oxidizing roasting of zinc concentrates may react with zinc (as ZnO) to obtain ZnFe₂O₄. As a result of this solid state interaction, the degree of direct leaching of zinc will decrease and the quantity of the resulting zinc cake will increase. This incurs additional costs for further processing of the cake using Waelz processing or hydrometallurgical methods [29].

The number of calculated charges from zinc concentrates that satisfy the claimed requirements [32] is only 3. The recipes are sorted by an optimizing criterion of minimum content of zinc ferrite (maximum zinc, soluble in 7% H₂SO₄) as a percentage. The resulting charges contain zinc dissolved in 7% sulfuric acid solution, in the range from 90.35 to 90.69%, and zinc ferrite in the range from 8.31 to 8.65%. In the best recipe, according to the chosen criterion, the zinc, soluble in 7% H₂SO₄, is 90.69% of the total zinc in it. This high percentage indicates that the degree of leaching of the zinc calcine can be expected to be high. The results obtained for the percentage of zinc as ferrite are very close to those obtained in industrial roasting of a charge of zinc concentrates.
This study was conducted with financial help through the project NI15-HF-001 of Plovdiv University Scientific Fund.

ACKNOWLEDGMENT

IV. CONCLUSION

The ferrites ZnFe_2O_4, CdFe_2O_4 and CuFe_2O_4 are synthesized using ceramic technology. The completion of solid-state reactions between initial oxides (ZnO, CdO and CuO) and Fe_2O_3 to obtain ferrites has been checked and solid-state reactions between initial oxides (ZnO, CdO and CuO) are synthesized using ceramic technology. The completion of solid-state reactions between initial oxides (ZnO, CdO and CuO) is achieved with the use of HCl. At temperatures above 85°C and 60 min of leaching the three non-ferrous metals pass into the solution completely. The resulting values for the degree of leaching of metals using H_2SO_4 are lower, but still remain significantly higher for all of the experimental conditions, compared to the values obtained using HNO3.

Five zinc sulfide concentrates are characterized by chemical analysis for iron content and by Mössbauer spectroscopy for iron-containing phases. This is done to optimize the charging by the criterion of minimal amount of zinc ferrite obtained at roasting the concentrates in a fluidized bed.

