Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31100
In vitro Environmental Factors Controlling Root Morphological Traits of Pineapple (Ananas comosus L. Merr)

Authors: S. Mohajer, R. M. Taha, M. Adel


Developing our knowledge of when pineapple roots grow can lead to improved water, fertilizer applications, and more precise culture management. This paper presents current understanding of morphological traits in pineapple roots, highlighting studies using incubation periods and various solid MS media treated with different sucrose concentrations and pH, which directly assess in vitro environmental factors. Rooting parameters had different optimal sucrose concentrations and incubation periods. All shoots failed to root in medium supplemented with sucrose at 5 g/L and no roots formed within the first 45 days in medium enriched with sucrose at 10 g/L. After 75 days, all shoots rooted in medium enriched with 10 and 20 g/L sucrose. Moreover, MS medium supplied with 20 g/L sucrose resulted in the longest and the highest number of roots with 27.3 mm and 4.7, respectively. Root function, such as capacity for P and N uptake, declined rapidly with root length. As a result, the longer the incubation period, the better the rooting responses would be.

Keywords: Tissue Culture, Environmental Factors, pineapple, in vitro rooting

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800


[1] Hamad, A. H. A., Taha, R. M., Mohajer, S. 2013. In vitro Induction and Proliferation of Adventitious Roots in Pineapple (Ananas comosus L.) Cultivars of Smooth Cayenne and Morris. Australian Journal of Crop Science, 7(7): 1038-1045.
[2] Xuan, W., Zhu, F. Y., Xu, S. H., Huang, B. K., Ling, T. L., Qi, J. Y. (2008). The HemeOxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol, 148:881-893.
[3] Soneji, J. R., Rao, P. S., Mhatre, M. 2002. Somaclonal variation in micropropagated dormant axillary buds of pineapple (Ananas-Comosus L., Merr.). J. hort. sci. biotech. 77 (1): 28-32.
[4] Ko, H. L., Campbell, P. R., Jobin-D├ęcor, M. P., Eccleston, K. L., Graham, M. W., Smith, M. K., 2006. The introduction of transgenes to control blackheart in pineapple (Ananas comosus L.) cv. Smooth cayenne by microprojectile bombardment. Euphytica, 150: 387- 395.
[5] Bhatia, P., Ashwath, N. 2002. Development of rapid method for micropropagation of a new pineapple (Ananas comosus (L) Merr. Clone Yeppoon gold. Acta Hort. 575: 125- 131.
[6] Almeida, W. A., DeSantana, G. S., Rodriguez, A. P. M., Costa, M. A. P. 2002. Optimization of a protocol for the micropropagation of pineapple. Rev. Brasil. Fruticult. 24 (2), 296- 300.
[7] Khan, S., Nasib, A., Saeed, B. A. 2004. Employment of in vitro technology for large scale multiplication of pineapples (Ananas comosus). Pak.J. Bot. 36 (3): 611-615.
[8] Gangopadhyay, G., Bandyopadhyay, T., Poddar, R., Gandopadhyay, S. B., Mukherjee, K. K. 2005. Encapsulation of pineapple micro shoots in alginate beads for temporary storage. Curr. Sci. 88 (6): 972- 977.
[9] Hamad, A. M., Taha, R. M. 2008. The effect of different hormone and incubation periods on in vitro proliferation of pineapple (Ananas comusus L.Merr) cv. Smooth cayenne shoot tip culture. Pak. J. Biol. Sci. 11 (3): 386- 391.
[10] Kofi, O. F., Adachi, T. 1993. Effect of cytokinin on the proliferation of multiple shoots of pineapple in vitro. SABRAO Journal. 25(1), 59- 69.
[11] Almeida, W. A., Matos, A. P., Souza, A. S. 1997. Effect of benzylaminopurine (BAP) on in vitro proliferation of pineapple (Ananas comosus (L) Merr). Acta Hort. 425, 235-242.
[12] Kanso, K. E., Ayeh, K. O., Oduro, V., Amiteye, S., Amoatey, H. M. 2008. Effect of 6-benzylaminopurine and naphthalene acetic acid on in vitro production of MD2 pineapple planting materials. World Appl. Sci. J. 3(4): 614- 619.
[13] Escalona, M., Lorenzo, J. C., Gonzalez, B., Daquinta, M., Gonzalez, J. L., Desjardins Y., Borroto, C. G. 1999. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Report 18(9):743-748.
[14] Be, L. V., Debergh, P. C. 2006. Potential low cost micropropagation of pineapple (Ananas comosus). S. Afr. J. Bot. 72: 191- 194.
[15] Kodym, A., Hollenthoner, S., Zapata-Arias, F. J. 2001. Cost reduction in the micropropagation of banana by using tubular skylights as source for natural lighting. In Vitro Cell. Devel. Biol. Plant, 37 (2): 237-242.
[16] Yadav, S., Saini, N., Jain, R. K. 2004. Low-cost multiplication and RAPD analysis of micropropagated plants in sugarcane. Physiology and Molecular Biology Plants, 10 (2), 269-276.
[17] Belarmino, M. M., Gabon, C. F. 1999. Low-cost micropropagation of Chrysanthemum (Chrysanthemum morifolium L.) through tissue culture. Philip. J. Sci., 128(2), 125-143.
[18] Mathews, V. H., Rangan, T. S. 1979. Multiple plantlets in lateral bud and leaf explant in vitro cultures of pineapple. Sci. Hort. 11(4), 319- 328.
[19] Bergmann, B. A., Whetten, R. 1998. In vitro rooting and early greenhouse growth of micropropagated Paulownia elongate shoots. New Forests. 15: 127- 138.
[20] Konan, E. k., Kouadio, J. Y., Flori, A. 2007. Evidence for an interaction effect during in vitro rooting of oil palm (Elaeis guineensis Jacq.) somatic embryo-derived plantlets. In Vitro Cell. Dev. Biol. Plant. 43; 456- 466.