DNA Nanowires: A Charge Transfer Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
DNA Nanowires: A Charge Transfer Approach

Authors: S. Behnia, S. Fathizadeh

Abstract:

Conductivity properties of DNA molecule is investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. This model is a tight-binding linear nanoscale chain. We have tried to study the electrical current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.

Keywords: Charge transfer in DNA, Chaos theory, Molecular electronics, Negative Differential resistance.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108444

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858

References:


[1] N. C. Seeman, “DNA in a material world,” Nature, vol. 421, no. 6921, pp. 427-431, 2003.
[2] P. J. Dandliker, R. E. Holmlin, J. K. Barton, “Oxidative thymine dimer repair in the DNA helix,” Science, vol. 275, no. 5305, pp. 1465-1468, 1997.
[3] B. M. Venkatesan, R. Bashir, “Nanopore sensors for nucleic acid analysis,” Nat. Nanotechnol. Vol. 6, no. 10, pp. 615-624, 2011.
[4] D. D. Eley, D. I. Spivey, “Semiconductivity of organic substances,” Trans. Faraday Soc. vol. 58, pp. 405-410, 1962.
[5] R. Bruinsma, G. Grüner, M. R. D´orsogna, J. Rudnick, “Fluctuationfacilitated charge migration along DNA,” Phys. Rev. Lett. vol. 85, no. 20, pp. 4393, 2000.
[6] D. Ly, Y. Kan, B. Armitage, G. B. Schuster, “Cleavage of DNA by irradiation of substituted anthraquinones: intercalation promotes electron transfer and efficient reaction at GG steps,” J. Am. Chem. Soc. vol. 118, no. 36, pp. 8847-8848, 1996.
[7] W. Su, J. R. Schrieffer, A. Heeger, “Solitons in polyacetylene,” J. Phys. Rev. Lett. vol. 42, no. 25, pp. 1698, 1979.
[8] S. Behnia, M. Panahi, A. Akhshani, A. Mobaraki, “Mean Lyapunov exponent approach for the helicoidal Peyrard–Bishop model,” Phys. Lett. A, vol. 375, no. 41, pp. 3574-3578, 2011.
[9] D. M. Basko, E. M. Conwell, “Self-trapping versus trapping: Application to hole transport in DNA,” Phys. Rev. E, vol. 65, no. 6, pp. 061902, 2002.
[10] R. C. Hilborn, “Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers,” Oxford University Press, USA, 2000.
[11] H. Shibata, “Lyapunov exponent of partial differential equation,” Physica A, vol. 264, no. 1, pp. 226-233, 1999.
[12] J. A. Berashevich, A. D Bookatz, T. Chakraborty, “The electric field effect and conduction in the Peyrard–Bishop–Holstein model,” J. Phys.: Condens. Matter, vol. 20, no. 3, pp. 035207, 2008.
[13] L. M. Bezerril, D. A. Moreiraa, E. L. Albuquerque, U. L. Fulcob, E. L. de Oliveira, J. S. de Sousa, “Current–voltage characteristics of doublestrand DNA sequences,” Phys. Lett. A, vol. 373, no. 37, pp. 3381-3385, 2009.
[14] P. C. Jangjian, T. F. Liu, M. Y. Li, M. S. Tsai, C. C. Chang, “Room temperature negative differential resistance in DNA-based molecular devices,” Appl. Phys. Lett. vol. 94, no. 4, pp. 043105, 2009.
[15] J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science, vol. 286, no. 5444, pp. 1550-1552, 1999.