ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32795
ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell

Authors: S. Limpattayanate, M. Hunsom

Abstract:

A comparison of activity and stability of the as-formed Pt/C, Pt-Co and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single Proton Exchange Membrane (PEM) fuel cell, the Oxygen Reduction Reaction (ORR) activity of the Pt-M/C electrocatalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C > Pt-Co/C > Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electrochemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt- Pd/C was the most stable than the other three electrocatalysts.

Keywords: ORR activity, Stability, Pt-based electrocatalysts, PEM fuel cell.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107630

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372

References:


[1] K. Jiao, I.E. Alaefour, X. Li, “Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes”, Fuel, vol. 90, pp. 568-582, Feb. 2011.
[2] A. Yilanci, I. Dincer, H.K. Ozturk, “Performance analysis of a PEM fuel cell unit in a solar-hydrogen system”, Int. J. Hydrogen. Energ., Vol. 33, pp. 7538-7352, Dec. 2008.
[3] J.H. Lin, W.H. Chen, Y.J. Su, T.H. Ko, “Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell”, Fuel, vol. 87, pp. 2420-2424, Sep. 2008.
[4] YY. Tang, W. Yuan, M. Pan, Z. Li, G. Chen, Y. Li, “Experimental investigation of dynamic performance and transient responses of a kWclass PEM fuel cell stack under various load changes.”, Appl. Energ., Vol. 87, pp.1410-1417, Apr. 2010.
[5] X. Zhang, J. Guo, J. Chen, “The parametric optimum analysis of a proton exchange membrane (PEM fuel cell) and its load matching”, Energy, Vol. 35, pp. 5294-5299, Dec. 2010.
[6] C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, “A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction”, J. Power Source., vol. 173, pp. 891-908, Nov. 2007.
[7] W. Trongchuankij, K. Pruksathorn, M. Hunsom, “Preparation of a high performance Pt-Co/C electrocatalyst for oxygen reduction in PEM fuel cell via a combined process of impregnation and seeding”, Appl. Ener., 88, pp. 974-980, Mar. 2011.
[8] S.S. Kocha, Electrochemical degradation: Electrocatalyst and support durability, in: Polymer electrolyte fuel cell degradation, M.M. Mench, E.C. Kumbur, T. Nejat Veziroglu., Ed., Elsevier 2012.
[9] N.A. Vante, H. Tributsch, “Energy conversion catalysis using semiconducting transition metal cluster compounds”, Nature, vol. 323, pp. 431-432, Oct.1986.
[10] J.J.L. Fernández, V. Raghuveer, A. Manthiram, A.J. Bard, “Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells”, J. Am. Chem. Soc., vol. 127, pp.13100-13101, Aug. 2005.
[11] V.S. Bagotsky, Fuel cells, Problems and Solution, Chapter 12, John Wiley & Sons, Inc. 2009.
[12] F. Yongjun, A.V. Nicolas, “Nonprecious metal catalysts for the molecular oxygen-reduction reaction”, Phys. Status Solidi (b), vol. 245, pp. 1792-1806, Aug. 2008.
[13] L. Zhang, J. Zhang, D.P. Wilkinson, H. Wang, “Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions”, J. Power. Sourc., vol. 156, pp. 171-182, Jun. 2006.
[14] D. Baresel, W. Sarholz, P. Scharner, J. Schmitz, “Transition metal chalcogenides as oxygen catalysts for fuel-cells”, Chem. Phys., Vol. 778, pp. 608-611, 1974.
[15] D. Susac, A. Sode, L. Zhu, P.C. Wong, M. Teo, D. Bizzotto, K.A.R. Mitchell, P.R. Parsons, S.A. Campbell, “A methodology for investigating new nonprecious metal catalysts for PEM fuel cells”, J. Phys. Chem. B, vol. 110, pp. 10762-10770, May 2006.
[16] K. Lee, L. Zhang, J. Zhang, “Ternary non-noble metal chalcogenide (WCo- Se) as electrocatalyst for oxygen reduction reaction”, J. Electrochem. Com., vol. 9, pp.1704-1078, Jul. 2007.
[17] H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, B. Yi, “A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride”, Electrochem. Com., vol. 8, pp.707-712, May 2006.
[18] H. Zhong, H. Zhang, Y. Liang, J. Zhang, M. Wang, X. Wang, “A novel non-noble electrocatalyst for oxygen reduction in proton exchange membrane fuel cells”, J. Power. Sourc., vol. 164, pp. 572-577, Feb. 2007.
[19] F. Charreteur, F. Jaoeun, S. Ruggeri, J. Dodelet, “Fe/N/C non-precious metal catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction”, Electrochim. Acta, vol. 53, 2925-2938, Feb. 2008.
[20] X. Wang, J.S. Lee, Q. Zhu, L. Liu, Y. Wang, S. Dai, “Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction”, Chem. Mater., vol. 22, pp. 2178-2180, Mar. 2010.
[21] J.H. Kim, A. Ishihara, S. Mitsushima, N. Kamiya, K.I. Ota, “New nonplatinum cathode based on chromium for PEFC”, Chem. Lett., vol. 36, pp. 514-515, Jan. 2007.
[22] C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, J. Zhang, Z. Shi, A.L.B. Marques, E.P. Marques, S. Wu, J. Zhang,“Novel carbon-supported Fe-N electrocatalysts synthesized through heat treatment of iron tripyridyltriazine complexes for the PEM fuel cell oxygen reduction reaction”, Electrochim. Acta, vol. 53, pp. 7703-7710, Nov. 2008.
[23] S.L. Gojkovic, S. Gupta, R.F. Savinell, “Heat-treated iron(III) tetramethoxyphenylporphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part III. Detection of hydrogenperoxide during oxygen reduction”, Electrochim. Acta., vol. 45, pp. 889- 897, Dec. 1999.
[24] O. Contamin, C. Debiemme-Chouvy, M. Savy, G. Scarbeck, “O2electroreduction catalysis: effects of sulfur addition on some cobalt macrocycles”, J. New. Mater. Electrochem. Syst., Vol. 3, pp. 67-74, Jun. 2000.
[25] H. Schulenburg, S. Stankov, V. Schunemann, J. Radnik, I. Dorbandt, S. Fiechter, P. Bogdanoff, H. Tributsch, “Catalysts for the oxygen reduction from heat-treated Iron(III) Tetramethoxyphenylporphyrin chloride: structure and stability of active sites”, J. Phys. Chem. B., vol. 107, pp. 9034-9041, Jul. 2003.
[26] C. Medard, M. Lefevre, J.P. Dodelet, F. Jaouen, G. Lindbergh, “Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports”, Electrochim. Acta, vol. 51, pp. 3202-3213, Apr. 2006.
[27] R. Baker, D.P. Wilkinson, J. Zhang, “Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures”, Electrochim. Acta, vol. 53, pp. 6906-6919, Oct. 2008.
[28] S. Pylypenko, S. Mukherjee, T.S. Olson, P. Atanassov, “Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles”, Electrochim. Acta, vol. 53, pp. 7875-7883, Nov. 2008.
[29] U.I. Koslowski, I. Abs-Wurmbach, S. Fiechter, P. Bogdanoff, “Nature of the catalytic Centers of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of Fe-N4 Centers”, J. Phys. Chem. C, vol. 112, pp. 15356-15366, Sep. 2008.
[30] I. Herrmann, U.I. Kramm, S. Fiechter, P. Bogdanoff, “Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction”, Electrochim. Acta, vol. 54, pp. 4275-4287, Jul. 2009.
[31] V. Jalan, E.J. Taylor, “Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid”, J. Electrochem. Soc., vol. 130, pp. 2299-2302, Sep. 1983.
[32] M.T. Paffett, G.J. Berry, S. Gottesfeld, “Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum”, J. Electrochem. Soc., vol. 135, pp. 1431-1436, May 1988.
[33] B.C. Beard, P.N. Ross, “The structure and activity of Pt–Co alloys as oxygen reduction electrocatalysts”, J. Electrochem. Soc., vol. 137, pp. 3368-3374, May 1990.
[34] T. Toda, H. Igarashi, H. Uchida, M. Watanabe, “Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co”, J. Electrochem. Soc., vol. 146, pp. 3750-3756, May 1999.
[35] T.R. Ralph, J.E. Keating, N.J. Collis, T.I. Hyde. ETSU Contract Report F/02/00038, 1997.
[36] D. Thompsett, in Vielstich W, Gasteiger H, Lamm A (Eds.), Handbook of Fuel Cells-Fundamentals, Technology and Applications, Wiley, Chichester, UK, 2003, pp. 467.
[37] U.A. Paulus, A. Wokaun, G.G. Scherer,T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.N. Ross, “Oxygen Reduction on Carbon Supported Pt- Ni and Pt-Co Alloy Catalysts”, J. Phys. Chem. B, vol. 106, pp. 4181- 4191, Mar. 2002.
[38] T. He, E. Kreidler, L. Xiong, J. Luo, C.J. Zhong, “Combinatorial screening and nano-synthesis of platinum binary alloys for oxygen electroreduction”, J. Electrochem. Soc., vol. 153, pp. A1637-A1643, Feb. 2006.
[39] E. Antolini, J.R.C. Salgado, E.R. Gonzalez, “The stability of Pt–M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt-Co catalyst”, J. Power. Sourc., vol. 160, pp. 957-968, Oct. 2006.
[40] H.R. Colón-Mercado, H. Kim, B.N. Popov, “Durability study of Pt3Ni1 catalyst as cathode in PEM fuel cells”, Electrochem. Com., vol. 6, pp. 795-759, Aug. 2004.
[41] H.R. Colón-Mercado, B.N. Popov, “Stability of platinum based alloy cathode catalysts in PEM fuel cells”, J. Power. Sourc., vol. 155, pp. 253- 263, Apr. 2006.
[42] G. Li, L. Hu, J.M. Hill, “Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and coprecipitation”, Appl. Catal. A, vol. 301, pp.16-24, Feb. 2006.
[43] H. Wu, D. Wexler, G. Wang, “PtxNi alloy nanoparticles as cathode catalyst for PEM fuel cells with enhanced catalytic activity”, J. Alloys Comp., vol. 488, pp. 195-198, Nov. 2009.
[44] Y.H. Cho, T.Y. Jeon, J.W. Lim, Y.H. Cho, M. Ahnb, N. Jung, S.J. Yoo, W.S. Yoon, Y.E. Sung, “Performance and stability characteristics of MEAs with carbon-supported Pt and Pt1Ni1 nanoparticles as cathode catalysts in PEM fuel cell”, Inter. J. Hydrogen. Ener., vol. 36, pp. 4394- 4399, Apr. 2011.
[45] C.S. Zignani, E. Antolini, E.R. Gonzalez, “Evaluation of the stability and durability of Pt and Pt–Co/C catalysts for polymer electrolyte membrane fuel cells”, J. Power Sourc., vol. 182, pp. 83-90, Jul. 2008.
[46] B. Fang, B.N. Wanjala, J. Yin, R. Loukrakpam, J. Luo, X. Hu, J. Last, C.J. Zhong, “Evaluation of the stability and durability of Pt and Pt–Co/C catalysts for polymer electrolyte membrane fuel cells Electrocatalytic performance of Pt-based trimetallic alloy nanoparticle catalysts in proton exchange membrane fuel cells”, Inter. J. Hydro. Energ., vol. 37, pp. 4627-4632, Mar. 2012.
[47] W. Trongchuankij, K. Poochinda, K. Pruksathorn, M. Hunsom, “A study on novel combined processes for preparation of high performance Pt- Co/C electrocatalyst for oxygen reduction in PEM fuel cell”, Renew. Energ., vol. 12, pp. 2839-2843, Dec. 2010.
[48] S. Thanasilp, M. Hunsom, “Effect of MEA fabrication techniques on the cell performance of Pt-Pd/C electrocatalyst for oxygen reduction in PEM fuel cell”, Fuel, vol. 89, pp. 3847-3852, Dec. 2010.
[49] S. Thanasilp, M. Hunsom, “Preparation of a high performance Pt-Pd/C electrocatalyst coated membrane for ORR in PEM fuel cells via a combined process of impregnation and seeding: Effect of electrocatalyst loading on carbon support”, Electrochim. Acta, vol. 56, pp. 1164- 1171, Jan. 2011.
[50] S. Thanasilp, M. Hunsom, “Effect of Pt: Pd atomic ratio in Pt-Pd/C electrocatalyst coated membrane on the electrocatalytic activity of ORR in PEM fuel cells”, Renew. Ener., vol. 36, pp.1975-1801, Jun. 2011.
[51] C. Termpornvithit, N. Chewasatn, M. Hunsom, “Stability of Pt-Co/C and Pt-Pd/C based oxygen reduction reaction electrocatalysts prepared at a low temperature by a combined impregnation and seeding process in PEM fuel cells”, J. Appl. Electrochem., vol. 42, pp.169-178, Mar. 2012.
[52] T. Ungar, J. Gubieza, G. Tichy, C. Pantea, T.W. Zerda, “Size and shape of crystallites and internal stresses in carbon blacks”, Compos. Part. AAppl., vol. 36, pp. 431-436, Apr.2005.
[53] Z.B. Wang, G.P. Yin, J. Zhang, Y.C. Sun, P.F. Shi, “Co-catalytic effect of Ni in the methanol electro-oxidation on Pt-Ru/C catalyst for direct methanol fuel cell”, Electrochim. Acta., vol. 51, pp. 5691-5697, Aug. 2006.
[54] S. Liao, B. Li, Y. Li, Physical characterization of electrocatalysts, in PEM fuel cell electrocatalysts and catalyst layers: Fundamental and applications, J. Zhang, Ed., Springer-Verlag London Limited; 2008: pp 488.
[55] T. Lopes, E. Antolini, E.R. Gonzalez, “Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells”, Int. J. Hydrogen Energy, vol. 33, pp. 5563-5570, Oct. 2008.
[56] Z.B. Wang, G.P. Yin, P.F. Shi, Y.C. Sun, “Novel Pt-Ru-Ni/C catalysts for methanol electro-oxidation in acid medium”, Electrochem. Solid-State Lett., vol. 9, pp. A13-A15, Nov. 2006.
[57] J.J. Van Der Klink, “NMR spectroscopy as a probe of surfaces of supported metal catalysts”, Adv. Catal., Vol. 44, pp. 1-117, Apr. 1999.
[58] K. Kinoshita, Electrochemical oxygen technology, John Wiley & Sons, Inc. 1992.
[59] J. O’M. Bockris, A. Damjanovic, J. McHardy, ThirdInternatoinal Symposium on Fuel Cells (TroisiemesJournees Internationales D’etudes de Piles a Combustibles), p.15 Presses AcademiqueEuropeennes, Brussels, 1969. Proceedings of a conference held under joint sponsor of SERAI and COMASCI, Brussels, June 16-20, 1969.
[60] E.Antolini, L. Giorgi, A. Pozio, E. Passalacqua, “Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC”, J. Power Sourc., vol. 77, pp.136-142, Feb. 1999.
[61] E. Rios, S. Abarca, P. Daccarett, P.N. Cong, D. Martel, J.F. Marco, J.R. Gancedo, J.R. Gautier, “Electrocatalysis of oxygen reduction on CuxMn3- xO4 (1.0 ≤ x ≤ 1.4) spinel particles/polypyrrole composite electrodes”, Inter. J. Hydro. Energ., vol. 33, pp. 4945-4954, Oct. 2008.
[62] J. Larminie, A. Dick, Fuel cell systems explained. 2nd edition. Chichester: John Wiley & Sons, 2003.
[63] H. Lv, S. Mu, N. Cheng, M. Pan, “Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon”, Appl. Catal. B, vol. 100, pp. 190-196, Oct. 2010.
[64] S.Y. Huang, P. Ganesan, B.N. Popov, “Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell”, Appl. Catal. B, vol. 102, pp. 71-77, Feb. 2011.
[65] U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, N.M. Markovi, P.N. Ross, “Oxygen reduction on high surface area Ptbased alloy catalysts in comparison to well defined smooth bulk alloy electrodes”, Electrochim. Acta, vol. 47, pp. 3787-3798, Aug. 2002.
[66] G. Prentice, Electrochemical Engineering Principles, Prentice Hall Inc., New Jersey, 1991.
[67] P. Yu, M. Pemberton, P. Plasse, Plasse P., “PtCo/C cathode catalyst for improved durability in PEMFCs”, J. Power Sourc., vol. 144, pp. 11-20, Jun. 2005.
[68] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, “PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability”, Electrochim. Acta, vol. 52, pp. 3910- 3920, Mar. 2007.
[69] P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, “Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells”, J. Electrochem. Soc., vol. 152, pp. A2256-A22571, Oct. 2005.
[70] T.R. Ralph, M.P. Hogarth, “Catalysis for low temperature fuel cells part I the cathode challenges”, Plat. Met. Rev., vol. 46, 3-14, Jan. 2002.
[71] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, “Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs”, Appl. Catal. B., vol. 56, pp. 9-35, Mar. 2005.
[72] C.H. Cho, B. Choi, Y.H. Cho, H.S. Park, Y.E. Sung, “Pd-based PdPt(19:1)/C electrocatalyst as an electrode in PEM fuel cell”, Electrochem. Com., vol. 9, pp. 378-381, Mar. 2007.
[73] M. Watanabe, K. Tsurumi, T. Mizukami, T. Nakamura, P. Stonehart, “Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells”, J. Electrochem. Soc., vol. 141, pp. 2659- 2668, May 1994.
[74] D.C. Huang, P.J. Yu, F.J. Liu, S.L. Huang, K.L. Hsueh, Y.C. Chen, C.H. Wu, W.C. Chang, F.H. Tsau, “Effect of dispersion solvent in catalyst ink on proton exchange membrane fuel cell performance”, Int. J. Electrochem. Sci., vol. 6, pp. 2551-2565, Jul. 2011.