Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32759
The Effect of a Muscarinic Antagonist on the Lipase Activity

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Lipases constitute one of the most important groups of industrial enzymes that catalyze the hydrolysis of triacylglycerol to glycerol and fatty acids. Muscarinic antagonist relieves smooth muscle spasm of the gastrointestinal tract and effect on the cardiovascular system. In this research the effect of a muscarinic antagonist on the lipase activity of Pseudomonas aeruginosa was studied. Lineweaver–Burk plot showed that the drug inhibited the enzyme by competitive inhibition. The IC50 value (0.16 mM) and Ki (0.03 mM) of the drug revealed the drug bound to enzyme with high affinity. Determination of enzyme activity in various pH and temperature showed that the maximum activity of lipase was at pH 8 and 60oC both in presence and absence of the drug.

Keywords: Bacteria, inhibition, kinetics, lipase.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100052

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135

References:


[1] A. Mrozik, Z. Piotrowsks-Seget, S. Labuzek. “Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons.” Pol J Environ Stud 12, 15-25, 2003.
[2] K.N. Timmis, D.H. Pieper. “Bacteria designed for bioremediation.” Trends Biotechnol 17, 201-204, 1999.
[3] Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 2000;406:959-64
[4] E. Frimmersdorf, S. Horatzek, A. Pelnikevich, L. Wiehlmann, D. Schomburg. “How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach.” Environ Microbiol 12, 1734- 1747, 2010.
[5] S. J. Cryz, B.H. Iglewski, “Production of alkaline protease by Pseudomonas aeruginosa” J Clin Microbiol 12(1):131-133, 1980.
[6] R. A. Bever, B. H. Iglewski, “Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene” J Bacteriol, 170(9):4309-4314. 1988.
[7] R.M. Ostroff, M.L. Vasil, “Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa” J Bacteriol, 169(10), 4597-460,11987.
[8] W. Stuer, K.E. Jaeger, U.K. Winkler, “Purification of extracellular lipase from Pseudomonas aeruginosa” J Bacteriol, 168(3):1070-1074, 1986.
[9] A. Martinez, P. Ostrovsky, D. N. Nunn, “LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components” Mol Microbiol, 34(2):317-326, 1999.
[10] B. König, K. E. Jaeger, A. E. Sage, M. L. Vasil, W. König, “Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes” Infect Immun, 64(8), 3252-3258, 1996.
[11] E.W. Seitz, “Industrial application of microbial lipases: A review” J Amer Oil Chem Soc, 51, 12-16, 1974.
[12] Sztajer H, Maliszewska I, Wieczorek J. Production of 3. exogenous lipase by bacteria, fungi and actinomycetes Enzyme Microb Technol 1998; 10: 492-7.
[13] J. Zhi, A.T. Melia, H. Eggers, R. Joly, I.H. Patel, "Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers" J Clin Pharmacol 35 (11): 1103–1108, 1995.
[14] M.C. Mancini, A. Halpern, "Pharmacological treatment of obesity". Arq Bras Endocrinol Metab 50(2), 377–89, 2006.
[15] D. Minai-Tehrani1, S. Khodai1, S. Aminnaseri, S. Minoui et al, “Inhibition of renal alkaline phosphatase by cimetidine” Drug Metab lett, 2011.
[16] D. Minai-Tehrani, S. Minoui, M. Sepehre, et al, “Inhibitory effect of codeine on sucrase activity” Drug Metab lett, 3, 58–60, 2009.
[17] D. Minai-Tehrani, N. Fooladi, S. Minoui, Z. Sobhani-Damavandifar, et al, “Structural changes and inhibition of sucrase after binding of scopolamine” Eur J Pharmacol, 635, 23-26, 2010.
[18] D. Minai-Tehrani, M. Eslami, N. Khazaei, E. Katebian, et al, “Inhibition and structural changes of liver alkaline phosphatase by tramadol” Drug Metab lett, in press.
[19] D. Minai-Tehrani, M. Ghaffari, Z. Sobhani-Damavandifar, S. Minoui, et al, “Ranitidine induces inhibition and structural changes in sucrase.” J Enzyme Inhib Med Chem, 27(4): 553–557, 2012.