Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30077
Evaluation of Bioactive Phenols in Blueberries from Different Cultivars

Authors: Christophe Gonçalves, Raquel P. F. Guiné, Daniela Teixeira, Fernando J. Gonçalves

Abstract:

Blueberries are widely valued for their high content in phenolic compounds with antioxidant activity, and hence beneficial for the human health. In this way, a study was done to determine the phenolic composition (total phenols, anthocyanins and tannins) and antioxidant activity of blueberries from three cultivars (Duke, Bluecrop, and Ozarkblue) grown in two different Portuguese farms. Initially two successive extractions were done with methanol followed by two extractions with aqueous acetone solutions. These extracts obtained were then used to evaluate the amount of phenolic compounds and the antioxidant activity. The total phenols were observed to vary from 4.9 to 8.2 mg GAE/g fresh weight, with anthocyanin’s contents in the range 1.5-2.8 mg EMv3G/g and tannins contents in the range 1.5- 3.8 mg/g. The results for antioxidant activity ranged from 9.3 to 23.2 molTE/g and from 24.7 to 53.4molTE/g, when measured, respectively, by DPPH and ABTS methods. In conclusion it was observed that, in general, the cultivar had a visible effect on the phenols present, and furthermore, the geographical origin showed relevance either in the phenols contents or the antioxidant activity.

Keywords: Anthocyanins, antioxidant activity, blueberry cultivar, geographical origin, phenolic compounds.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099878

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098

References:


[1] J. Paes, R. Dotta, G. F. Barbero, and J. Martínez, “Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids,” The Journal of Supercritical Fluids, vol. 95, pp. 8–16, Nov. 2014.
[2] K. Gündüz, S. Serçe, and J. F. Hancock, “Variation among highbush and rabbiteye cultivars of blueberry for fruit quality and phytochemical characteristics,” Journal of Food Composition and Analysis, vol. 38, pp. 69–79, Mar. 2015.
[3] E. Rodrigues, N. Poerner, I. I. Rockenbach, L. V. Gonzaga, C. R. Mendes, and R. Fett, “Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil,” Food Science and Technology (Campinas), vol. 31, no. 4, pp. 911–917, Dec. 2011.
[4] A. M. Connor, J. J. Luby, J. F. Hancock, S. Berkheimer, and E. J. Hanson, “Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage,” J. Agric. Food Chem., vol. 50, no. 4, pp. 893–898, Feb. 2002.
[5] Q. Zhou, C. Zhang, S. Cheng, B. Wei, X. Liu, and S. Ji, “Changes in energy metabolism accompanying pitting in blueberries stored at low temperature,” Food Chemistry, vol. 164, pp. 493–501, Dec. 2014.
[6] A. D. R. Castrejón, I. Eichholz, S. Rohn, L. W. Kroh, and S. Huyskens- Keil, “Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening,” Food Chemistry, vol. 109, no. 3, pp. 564–572, Aug. 2008.
[7] K. A. Youdim, B. Shukitt-Hale, A. Martin, H. Wang, N. Denisova, P. C. Bickford, and J. A. Joseph, “Short-Term Dietary Supplementation of Blueberry Polyphenolics: Beneficial Effects on Aging Brain Performance and Peripheral Tissue Function,” Nutritional Neuroscience, vol. 3, no. 6, pp. 383–397, 2000.
[8] G. D. Stoner, L.-S. Wang, and B. C. Casto, “Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries,” Carcinogenesis, vol. 29, no. 9, pp. 1665–1674, Sep. 2008.
[9] S. Norberto, S. Silva, M. Meireles, A. Faria, M. Pintado, and C. Calhau, “Blueberry anthocyanins in health promotion: A metabolic overview,” Journal of Functional Foods, vol. 5, no. 4, pp. 1518–1528, Oct. 2013.
[10] G. Borges, A. Degeneve, W. Mullen, and A. Crozier, “Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries†,” J. Agric. Food Chem., vol. 58, no. 7, pp. 3901–3909, 2009.
[11] A. Karlsen, I. Paur, S. K. Bøhn, A. K. Sakhi, G. I. Borge, M. Serafini, I. Erlund, P. Laake, S. Tonstad, and R. Blomhoff, “Bilberry juice modulates plasma concentration of NF-kappaB related inflammatory markers in subjects at increased risk of CVD,” Eur J Nutr, vol. 49, no. 6, pp. 345–355, Sep. 2010.
[12] M. E. Schreckinger, J. Wang, G. Yousef, M. A. Lila, and E. Gonzalez de Mejia, “Antioxidant Capacity and in Vitro Inhibition of Adipogenesis and Inflammation by Phenolic Extracts of Vaccinium floribundum and Aristotelia chilensis,” J. Agric. Food Chem., vol. 58, no. 16, pp. 8966– 8976, 2010.
[13] J. DeFuria, G. Bennett, K. J. Strissel, J. W. Perfield, P. E. Milbury, A. S. Greenberg, and M. S. Obin, “Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae,” J. Nutr., vol. 139, no. 8, pp. 1510–1516, Aug. 2009.
[14] A. Faria, D. Pestana, D. Teixeira, V. de Freitas, N. Mateus, and C. Calhau, “Blueberry anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines,” Phytother Res, vol. 24, no. 12, pp. 1862–1869, Dec. 2010.
[15] L. A. Pacheco-Palencia, S. U. Mertens-Talcott, and S. T. Talcott, “In vitro absorption and antiproliferative activities of monomeric and polymeric anthocyanin fractions from açai fruit (Euterpe oleracea Mart.),” Food Chemistry, vol. 119, no. 3, pp. 1071–1078, Apr. 2010.
[16] S. Wang, N. Moustaid-Moussa, L. Chen, H. Mo, A. Shastri, R. Su, P. Bapat, I. Kwun, and C.-L. Shen, “Novel insights of dietary polyphenols and obesity,” J. Nutr. Biochem., vol. 25, no. 1, pp. 1–18, Jan. 2014.
[17] M. Meydani and S. T. Hasan, “Dietary Polyphenols and Obesity,” Nutrients, vol. 2, no. 7, pp. 737–751, Jul. 2010.
[18] D. Barros, O. B. Amaral, I. Izquierdo, L. Geracitano, M. do Carmo Bassols Raseira, A. T. Henriques, and M. R. Ramirez, “Behavioral and genoprotective effects of Vaccinium berries intake in mice,” Pharmacol. Biochem. Behav., vol. 84, no. 2, pp. 229–234, Jun. 2006.
[19] S. Y. Wang, H. Chen, M. J. Camp, and M. K. Ehlenfeldt, “Genotype and growing season influence blueberry antioxidant capacity and other quality attributes,” International Journal of Food Science & Technology, vol. 47, no. 7, pp. 1540–1549, Jul. 2012.
[20] P. B. Pertuzatti, M. T. Barcia, D. Rodrigues, P. N. da Cruz, I. Hermosín- Gutiérrez, R. Smith, and H. T. Godoy, “Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries,” Food Chemistry, vol. 164, pp. 81–88, Dec. 2014.
[21] P. B. Pertuzatti, M. T. Barcia, A. C. Jacques, M. Vizzotto, H. T. Godoy, and R. C. Zambiazi, “Quantification of Several Bioactive Compounds and Antioxidant Activities of Six Cultivars of Brazilian Blueberry,” The Natural Products Journal, vol. 2, no. 3, pp. 188–195, Sep. 2012.
[22] M. T. Barcia, A. C. Jacques, P. B. Pertuzatti, and R. C. Zambiazi, “Determination by HPLC of ascorbic acid and tocopherols in fruits,” Semina: Ciências Agrárias, vol. 31, pp. 381–390, 2010.
[23] W. Kalt, J. e. McDonald, and H. Donner, “Anthocyanins, Phenolics, and Antioxidant Capacity of Processed Lowbush Blueberry Products,” Journal of Food Science, vol. 65, no. 3, pp. 390–393, Apr. 2000.
[24] L. Gao and G. Mazza, “Quantitation and Distribution of Simple and Acylated Anthocyanins and Other Phenolics in Blueberries,” Journal of Food Science, vol. 59, no. 5, pp. 1057–1059, Sep. 1994.
[25] H. Böhm, “G. Mazza und E. Miniati: Anthocyanins in Fruits, Vegetables and Grains. 362 Seiten, zahlr. Abb. und Tab. CRC Press, Boca Raton, Ann Arbor, London, Tokyo 1993. Preis: 144.— £,” Nahrung, vol. 38, no. 3, pp. 343–343, Jan. 1994.
[26] R. Zadernowski, M. Naczk, and J. Nesterowicz, “Phenolic Acid Profiles in Some Small Berries,” J. Agric. Food Chem., vol. 53, no. 6, pp. 2118– 2124, Mar. 2005.
[27] A. Howell, W. Kalt, J. C. Duy, C. F. Forney, and J. E. McDonald, “Horticultural Factors Affecting Antioxidant Capacity of Blueberries and other Small Fruit,” HortTechnology, vol. 11, no. 4, pp. 523–528, Jan. 2001.
[28] D. Ferreira, S. Guyot, N. Marnet, I. Delgadillo, C. M. G. C. Renard, and M. A. Coimbra, “Composition of phenolic compounds in a Portuguese pear (Pyrus communis L. var. S. Bartolomeu) and changes after sundrying,” J. Agric. Food Chem., vol. 50, no. 16, pp. 4537–4544, Jul. 2002.
[29] F. J. Gonçalves, S. M. Rocha, and M. A. Coimbra, “Study of the retention capacity of anthocyanins by wine polymeric material,” Food Chem, vol. 134, no. 2, pp. 957–963, Sep. 2012.
[30] R. Boulton, “The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review,” Am. J. Enol. Vitic., vol. 52, no. 2, pp. 67–87, Jan. 2001.
[31] P. Ribereau-Gayon and E. Stonestreet, “Dosage des tanins du vin rouge et determination de leur structure,” Chimie Anal, vol. 48, pp. 188–196, 1966.
[32] W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT - Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995.
[33] N. J. Miller, C. Rice-Evans, M. J. Davies, V. Gopinathan, and A. Milner, “A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates,” Clin. Sci., vol. 84, no. 4, pp. 407–412, Apr. 1993.
[34] L. C. Spagolla, M. M. Santos, L. M. L. Passos, and C. L. Aguiar, “Extração alcoólica de fenólicos e flavonóides totais de mirtilo Rabbiteye (Vaccinium ashei) e sua atividade antioxidante,” Rev. Ciênc. Farm. Básica Apl., vol. 30, no. 2, pp. 59–64, 2009.
[35] V. Dragović-Uzelac, Z. Savić, A. Brala, B. Levaj, D. B. Kovačević, and A. Biško, “Evaluation of Phenolic Content and Antioxidant Capacity of Blueberry Cultivars (Vaccinium corymbosum L.) Grown in the Northwest Croatia,” Food Technology and Biotechnology, vol. 48, no. 2, pp. 214–221, 2010.
[36] F. I. G. Rocha, Avaliação da cor e da actividade antioxidante da polpa e extracto de mirtilo (Vaccinium myrtillus) em Pó. Dissertação para obtenção de grau Mestre. Minas gerais, Brasil: Universidade Viçosa, 2009.