Copolymers of Pyrrole and α,ω-Dithienyl Terminated Poly(ethylene glycol)
Authors: Nesrin Köken, Esin A. Güvel, Nilgün Kızılcan
Abstract:
This work presents synthesis of α,ω-dithienyl terminated poly(ethylene glycol) (PEGTh) capable for further chain extension by either chemical or electrochemical polymeriztion. PEGTh was characterized by FTIR and 1H-NMR. Further copolymerization of PEGTh and pyrrole (Py) was performed by chemical oxidative polymerization using ceric (IV) salt as an oxidant (PPy-PEGTh). PEG without end group modification was used directly to prepare copolymers with Py by Ce (IV) salt (PPy-PEG). Block copolymers with mole ratio of pyrrole to PEGTh (PEG) 50:1 and 10:1 were synthesized. The electrical conductivities of copolymers PPy-PEGTh and PPy-PEG were determined by four point probe technique. Influence of the synthetic route and content of the insulating segment on conductivity and yield of the copolymers were investigated.
Keywords: Chemical oxidative polymerization, conducting copolymer, poly(ethylene glycol), polypyrrole.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099324
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3848References:
[1] S. Ahmad, S. S. Gursoy, S. Kazim, A. Uygun, “Growth of N-substituted polypyrrole layers in ionic liquids: Synthesis and its electrochromic properties”, Solar Energy Materials & Solar Cells, vol. 99, pp. 95–100, 2012.
[2] J. F. Mike, J. L. Lutkenhaus,“Recent advances in conjugated polymer energy storage”, Journal of Polymer Science, Part B: Polymer Physics, vol. 51, pp. 468–480, 2013.
[3] R. Holze and Y. P. Wu, “Intrinsically conducting polymers in electrochemical energy technology: Trends and progress”, ElectrochimicaActa, vol. 122, pp. 93–107, 2014.
[4] P. S. Sharma, A. Pietrzyk-Le, F. D’Souza, W. Kutner, “Electrochemically synthesized polymers in molecular imprinting for chemical sensing”, Anal. Bioanal. Chem., 402:3177–3204, 2012.
[5] S. T. Navale, A. T. Mane, M. A. Chougule, R. D. Sakhare, S. R. Nalage, V. B. Patil, “Highly selective and sensitive room temperature NO2 gas sensorbased on polypyrrole thin films”,Synthetic Metals, vol. 189, pp. 94–99, 2014.
[6] J. Li, H. Xie and Y. Li, “Fabrication of gold nanoparticles/polypyrrole composite-modified electrode for sensitive hydroxylamine sensor design”, J. Solid State Electrochem., vol. 16, pp. 795–802, 2012.
[7] X. Liang , Y. Cheng and C. Qi, Polypyrrole based strong acid catalyst for acetalization, Solid State Sciences, vol. 13, pp. 1820-1824, 2011.
[8] J. Wang, J. Wang , Z. Wang and S. Wang, “Electrocatalytic oxidation of ascorbic acid at polypyrrole nanowire modified electrode”, Synthetic Metals, vol. 156, pp. 610–613, 2006.
[9] W. Zheng, G. Alici, P. R. Clingan, B. J. Munro, G. M. Spinks, J. R. Steele, G. G. Wallace, “Polypyrrole stretchable actuators”, Journal of Polymer Science Part B: Polymer Physics, vol. 51, pp. 57–63, 2013.
[10] Y. Wang and X. Jing, “Intrinsically conducting polymers for electromagnetic interference shielding”, Polym. Adv. Technol., vol. 16, pp. 344–351, 2005.
[11] D. Das, K. Sen and S. Maity, “Studies on electro-conductive fabrics prepared by in situ chemical polymerization of mixtures of pyrrole and thiophene onto polyester”, Fibers and Polymers, vol.14, (3), pp. 345-351, 2013.
[12] P. Zarras, N. Anderson, C. Webber, D. J. Irvin, J. A. Irvin, A. Guenthner and J. D. Stenger-Smith, “Progress in using conductive polymers as corrosion-inhibiting coatings”, Radiation Physics and Chemistry, vol. 68, pp. 387–394, 2003.
[13] M. I. Khan, A. U. Chaudhry, S. Hashim, M. K. Zahoor and M. Z. Iqbal, “Recent developments in intrinsically conductive polymer coatings for corrosion protection”, Chemichal Engineering Research Bulletin, vol. 14, pp. 73–86, 2010.
[14] M. Shabani-Nooshabadi, S. M. Ghoreishi, Y. Jafari and N. Kashanizadeh, “Electrodeposition of polyaniline-montmorrilonite nanocomposite coatings on 316L stainless steel for corrosion prevention”, Journal ofPolymer Research, vol. 21: 416 , 2014.
[15] W. M. Sigmund, G. Weerasekera, C. Marestin,S. Styron,H. Zhou,M. Z. Elsabee,J. Rühe, G. Wegner,and R. S. Duran, “Polymerization of monolayers of 3-substituted pyrroles”, Langmuir, vol. 15, pp.6423-6427, 1999.
[16] J. Stejskal, M. Omastová, S. Fedorova, J. Prokeš, and M. Trchova,, “Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study”, Polymer, vol. 44, pp. 1353–1358, 2003.
[17] A. Kaynak, L. Rintoul and G. A. George, “Change of mechanical and electrical properties of polypyrrole films with dopant concentration and oxidative aging”,Materials Research Bulletin, vol. 35, pp. 813-824, 2000.
[18] S. P. Armes, M. Aldissi, G. C. Idzorek, P. W. Keaton, L. J. Rowton, G. L. Stradling, M. T. Collopy, and D. B. McColl, “Particle size distributions of polypyrrole colloids” Journal of Colloid and Interface Science, vol.141 (1), pp. 119–126, 1991.
[19] X. Li, X. Zhang and Li, H., “Preparation and characterization of pyrrole/aniline copolymer nanofibrils using the template–synthesis method”, Journal of Applied Polymer Science, vol. 81, pp. 3002–3007, 2001.
[20] X. Li, M. Lu and Li H., “Electrochemical copolymerization of pyrrole and thiophenenanofibrils using template–synthesis method”,Journal of Applied Polymer Science, vol. 86, pp. 2403–2407, 2002.
[21] N. Li, D. Shan and H.Xue,“Electrochemical synthesis and characterization of poly(pyrrole–co–tetrahydrofuran) conducting copolymer”, European Polymer Journal, vol. 43, pp. 2532–2539, 2007.
[22] N. Ballav and M. Biswas, “A conducting nanocomposite via intercalative polymerisation of thiophene in montmorillonite clay”, Synthetic Metals, vol. 142, pp. 309–315, 2004.
[23] H. K. Song and G. T. R. Palmore, “Conductive polypyrrole via enzyme catalysis”,J. Phys. Chem.B, vol. 109, pp. 19278–19287, 2005.
[24] A. Ramanaviciene, W. Schuhmann and A.Ramanavicius, “AFM study of conducting polymer polypyrrole nanoparticles formed by redox enzyme–glucose oxidase–initiated polymerization”, Colloids and Surfaces B: Biointerfaces, vol. 4, pp. 159–166, 2006.
[25] K. Kijewska, G. J. Blanchard, J. Szlachetko, J. Stolarski, A. Kisiel, A. Michalska, K. Maksymiuk, M. Pisarek, P. Majewski, P. Krysinski and M. Mazur, “Photopolymerized polypyrrole microvessels”,Chem. Eur. J., vol.18, pp. 310–320, 2012.
[26] H. R. Heydarnezhad and B. Pourabbas, “One–step synthesis of conductive ceria/polypyrrole nanocomposite particles via photo–induced polymerization method”, J. Mater. Sci.: Mater. Electron., vol. 24, pp. 4378–4385, 2013.
[27] A. T. Lawal and G. G. Wallace, “Vapour phase polymerisation of conducting and non-conducting polymers: A review”, Talanta, vol. 119, pp. 133-143, 2014.
[28] D. Bhattacharyya, R. M. Howden, D. C. Borrelli and K. K. Gleason, “Vapor phase oxidative synthesis of conjugated polymersand applications”, Journal of Polymer Science Part B: Polymer Physics, vol. 50, pp. 1329–1351, 2012.
[29] M. Omastová and F. Simon, “Surface characterizations of conductive poly(methyl methacrylate)/polypyrrole composites”, Journal of Materials Science, vol. 35, pp. 1743–1749, 2000.
[30] H. Acar, M. Karakışla and M. Saçak, “Potassium persulfate-mediated preparation of conducting polypyrrole/polyacrylonitrile composite fibers: Humidity and temperature-sensing properties”, Journal of Applied Polymer Science, vol. 125, pp. 3977–3985, 2012.
[31] C. Unsal, F. Kalaoglu, H. Karakas and A. S. Sarac, “Polypyrrole/poly(acrylonitrile–co–butyl acrylate) composite”,Advances in Polymer Technology, vol. 32 (S1), pp. E784–E792, 2013.
[32] A. Shakoor, P. J. S. Foot and T. Z. Rizvi, “Conductive poly(methyl methacrylate)–polypyrroledodecylbenzenesulfonate (PMMA–PPy.DBSA) blends prepared in solution in the presence of hydroquinone”, J. Mater. Sci: Mater. Electron., vol. 21, pp. 1270–1276, 2010.
[33] M. Ferenets and A. Harlin, “Chemical in situ polymerization of polypyrrole on poly(methyl metacrylate) substrate”, Thin Solid Films, vol. 515, pp. 5324–5328, 2007.
[34] F. Huijs and J. Lang, “Morphology and film formation of poly(butyl methacrylate)–polypyrrole core–shell latex particles”, Colloid Polym. Sci., vol. 278, pp. 746–756, 2000.
[35] D. Zhang, Q. Zhang, X. Gao, and G. Piao, “A nanocellulosepolypyrrole composite based on tunicate cellulose”,International Journal of Polymer Science, 2013, pp. 1–6, 2013.
[36] J. Li, X.-R. Qian, J.-H. Chen, C.-Y. Ding, and X.-H. An, “Conductivity decay of cellulose–polypyrrole conductive paper composite prepared by in situ polymerization method”, Carbohydrate Polymers, 82, 504–509, 2010.
[37] M. Micˇušík, M. Omastová, J. Prokeš, and I. Krupa, “Mechanical and electrical properties of composites based on thermoplastic matrices and conductive cellulose fibers”, Journal of Applied Polymer Science, vol. 101, pp. 133–142, 2006.
[38] S. Bousalem, C. Mangeney, Y. Alcote, M.M. Chehimi, T. Basinska and S. Slomkowski, “Immobilization of proteins onto novel, reactive polypyrrole–coated polystyrene latex particles”, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 249, pp. 91–94, 2004.
[39] X.-J. Xu, L.-M. Gan, K.-S. Siow and M.-K. Wong, “Synthesis and characterization of nanosizedpolypyrrole–polystyrene composite particles”, Journal of Applied Polymer Science, vol. 91, pp. 1360–1367, 2004.
[40] J. M. Lee, D. G. Lee, S. J. Lee, and J. H. Kim, “One–step synthetic route for conducting core–shell poly(styrene/pyrrole) nanoparticles”, Macromolecules, vol. 42, pp. 4511–4519, 2009.
[41] M. Han, K. Zhao, Y. Zhang, Z. Chen, and Y. Chu, Dielectric properties of polystyrene–polypyrrole core–shell conducting spheres suspended in aqueous solution, Colloids and Surfaces A: Physicochem. Eng., vol. 302, pp. 174–180, 2007.
[42] Z. Huang, C. Wang, Y. Li, and Z. Wang, “Controlled preparation of core–shell polystyrene/polypyrrole nanocomposite particles by a swelling–diffusion–interfacial polymerization method”, Colloid Polym. Sci., vol. 290, pp. 979–985, 2012.
[43] C. R.Broda, J. Y. Lee, S. Sirivisoot, C. E. Schmidt and B. S. Harrison, “A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering”, J. Biomed. Mater. Res. Part A, 98A, 509–516, 2011.
[44] G. Çakmak, Z. Küçükyavuz, and S. Küçükyavuz, “Flexible and conducting composites of polypyrrole and polydimethylsiloxane”, Journal of Applied Polymer Science, vol. 93, pp. 736–74, 2004.
[45] W.-I. Son, J.-M. Hong, and B.-S. Kim, “Polypyrrole composite membrane with high permeability prepared by interfacial polymerization”, Korean J. Chem. Eng., vol. 22 (2), pp. 285–290, 2005.
[46] C. Pirvu, C. C. Manole, A. B. Stoian, I. Demetrescu, “Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution”, ElectrochimicaActa, vol. 56, pp. 9893– 9903, 2011.
[47] Y.-C. Liu and B.-J. Hwang, “Enhancement of conductivity stability of polypyrrole films modified by valence copper and polyethylene oxide in an oxygen atmosphere”, Thin Solid Films, vol. 360, pp. 1–9, 2000.
[48] L. M. Yee, H. N. M. E. Mahmud, A. Kassim, and W. M. M. Yunus, “Polypyrrole–polyethylene glycol conducting polymer composite films: Preparation and characterization” Synthetic Metals, vol. 157, pp. 386–389, 2007.
[49] H. Eisazadeh, “Studying the characteristics of polypyrrole and its composites”, World Journal of Chemistry, vol. 2 (2), pp. 67–74, 2007.
[50] S. Nair, S. Natarajan, and S. H. Kim, “Fabrication of electrically conducting polypyrrole–poly(ethylene oxide) composite nanofibers”, Macromol. Rapid Commun., vol. 26, pp. 1599–1603, 2005.
[51] C. Jérôme, L. Martinot and R. Jérôme, “Ion–exchange properties of polypyrrole doped by –carboxylatedpolyethyleneoxide”, Synthetic Metals, vol. 105, pp. 65–71, 1999.
[52] K. M. Sivaraman, B. Özkale, O. Ergeneman, T. Lühmann, G. Fortunato, M. A. Zeeshan, B. J. Nelson and S. Pané, “Redox cycling for passive modification of polypyrrole surface properties: Effects on cell adhesion and proliferation”, Adv. Healthcare Mater., vol. 2, pp. 591–598, 2013.
[53] H. K. Lim, S. O. Lee, K. J. Song, S. G. Kim, and K. H. Kim, “Synthesis and properties of soluble polypyrrole doped with dodecylbenzenesulfonate and combined with polymeric additive poly(ethylene glycol)”, Journal of Applied Polymer Science, vol. 97, pp. 1170–1175, 2005.
[54] O. Y. Posudievsky, O. A. Kozarenko, V. S. Dyadyun, S. W. Jorgensen, J. A. Spearot, V.G. Koshechko and V. D. Pokhodenko, “Mechanochemically prepared ternary hybrid cathode material for lithium batteries”, ElectrochimicaActa, vol. 109, pp. 866-873, 2013.
[55] S. D. V. Luebben, B. Elliott, and C. Wilson, “Poly(heteroaromatic) block copolymers with electrical conductivity”,US Patent 7 279 534 B2, 2007.
[56] H. B. Yildiz, S. Kiralp, L. Toppare, Y. Yagci and K. Ito, “Synthesis of conducting copolymers of thiophene capped poly(ethylene oxide) with pyrrole and thiophene”,Materials Chemistry and Physics, vol. 100 (1), pp. 124-127, 2006.
[57] S. Gabriel, M. Ce´cius, K. Fleury-Frenette, D. Cossement, M. Hecq, N. Ruth, R. Jérôme, and C. Jérôme,“Synthesis of adherent hydrophilic polypyrrole coatings onto (semi)conducting surfaces”,Chem. Mater.,vol.19, pp. 2364–2371, 2007.