Native Point Defects in ZnO
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Native Point Defects in ZnO

Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani

Abstract:

Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.

Keywords: DFT, Native, n-Type, ZnO.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1090601

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4500

References:


[1] N. S. Han, H. S. Shim, , J. H. Seo, S. Y. Kim, S. M. Park, and J. K. Song, J.Appl. Phys. 107, 084306 (2010).
[2] D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).
[3] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
[4] L. S. Vlasenko, G. D. Watkins, and R. Helbig, Phys. Rev. B. 71, 115205 (2005).
[5] T. Kondela, Gregus. D. Zahoran, and T. Roch, Mat. Sci. Eng. 15, 012041 (2010).
[6] K. Vanheusden, C. H. Seager, W. L. Warren D. R. Tallant and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1969).
[7] D. C. Reynods, D. C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).
[8] C. G. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B. 66, 073202 (2002).
[9] E. C. Lee Y. S. Kim, Y. G Jin, and K. J. Chang, Phys. Rev. B. 64, 085120(2001).
[10] S. Limpijumnong, and S. B. Zhang, Appl. Phys. Lett. 86, 151910 (2005).
[11] P. R. Briddon and R. Jones, Phys. Status Solidi B 217, 131 (2000).
[12] M. J. Rayson and P. R. Briddon, Computer Phys. Comm. 178, 128 (2008).
[13] H. J. Monkhorst and J. D. Pack, Phys. Rev. B. 13, 5188 (1976).
[14] N. Troullier and J. L. Martins, Phys. Rev. B. 43, 1993 (1991).
[15] J. P. Perdew and Y. Wang, Phys. Rev. B. 45, 13244 (1992).
[16] J. P. Goss, M. J. Shaw, and P. R. Briddon, in Theory of Defects in Semiconductors, Vol. 104 of Topics in Applied Physics, edited by David A. Drabold and Stefan K. Estreicher (Springer, Berlin/Heidelberg, 2007), pp. 69–94.
[17] M. J. Rayson and P. R. Briddon, Phys. Rev. B. 80, 205104 (2009).
[18] CRC handbook of chemistry and physics, 73 ed., edited by D. R. Lide (CRC, Boca Raton, FL, 1992).
[19] S. Lany and A. Zunger, Phys. Rev. B. 78, 235104 (2008).
[20] A. Janotti and C. G. Van de Walle, Phys. Rev. B. 76, 165202 (2007).
[21] W. -J Lee J. Kang, and K. J. Chang, Phys. Rev. B. 73, 024117 (2007).
[22] A. Janotti and C. G. Van de Walle, J. Cryst. Growth. 287, 58 (2007).
[23] E. C Lee, Y. G. Chang, K. J. Kim, and Y. S. Jin, Phys. B. 73, 024117 (2007).
[24] C. D. Pemmaraju, R. Hanafin, T. Archer, H. B. Braun, and S. Sanvito, Phys. Rev. B. 78, 054428 (2008).
[25] P. Erhart, K. Albe, and A. Klein, Phys. Rev. B. 73, 205203 (2006).
[26] Stephan. Lany, and Alex. Zunger, Phys. Rev. Lett. 98, 045501 (2007).
[27] S. Lany, and A. Zunger, Phys. Rev. B. 78, 235104 (2008).
[28] F. Oba, I. Togo, A. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B. 77, 245202 (2008).
[29] A. R. Hutson, Phy. Rev. 108, 222 (1957).
[30] P. Erhart, and K. Albe, Appl. Phys. Lett. 88, 201918 (2006).
[31] A. F. Kohan, G. Ceder, D. Morgan, and C. G. van de Walle, Phys. Rev. B. 61, 15019 (2000).
[32] A. M. Gsiea, J. P. Goss, P. R. Briddon, and K. M. Etmimi, W. A. S. T. 75, 576 (2013).
[33] M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. B. 72, 155108 (2005)
[34] M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. B. 71, 155205 (2005)
[35] S. Limpijumnong, S. B. Zhang, Su-Huai. Wei, and C. H. Park, Phys. Rev. Lett. 92, 1555041 (2004).
[36] R-Y. Tian, and Y-J. Zhao, J. Appl. Phys. 106, 043707 (2009).
[37] X. Xu, Y. Shen, N. Xu, W. Hu, J. Lai, and J. Ying, Z. Wu, Vacuum 48, 1306 (2010).