Investigation on Fischer-Tropsch Synthesis over Cobalt-Gadolinium Catalyst
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Investigation on Fischer-Tropsch Synthesis over Cobalt-Gadolinium Catalyst

Authors: Jian Huang, Weixin Qian, Haitao Zhang, Weiyong Ying

Abstract:

Cobalt-gadolinium catalyst for Fischer-Tropsch synthesis was prepared by impregnation method with commercial silica gel, and its texture properties were characterized by BET, XRD, and TPR. The catalytic performance of the catalyst was tested in a fixed bed reactor. The results showed that the addition of gadolinium to the cobalt catalyst might decrease the size of cobalt particles, and increased the dispersion of catalytic active cobalt phases. The carbon number distributions for the catalysts was calculated by ASF equation.

Keywords: Fischer-Tropsch synthesis, cobalt-based catalysts, gadolinium, carbon number distributions.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1125977

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541

References:


[1] Khodakov A. Y., Chu. W., Fongarland. P., “Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels”, Chem. Rev., vol. 107, no. 5, pp. 1692-1744, 2007.
[2] Steynberg, A., & Dry, M. (Eds.), “Fischer-Tropsch Technology”, Elsevier, 2004.
[3] Jacobs, G., Das, T. K., Zhang, Y., Li, J., Racoillet, G., & Davis, B. H., “Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts,” Appl. Catal. A: Gen., vol. 233, no. 1, pp. 263-281, 2002.
[4] Reinikainen, M., Niemelä, M. K., Kakuta, N., & Suhonen, S., “characterisation and activity evaluation of silica supported cobalt and ruthenium catalysts”, Appl. Catal. A: Gen., vol. 174, no.1, pp. 61-75, 1998.
[5] Qiu, X., Tsubaki, N., Sun, S., & Fujimoto, K., “Fischer–Tropsch synthesis: influence of noble metals on the performance of Co/SiO2 catalyst for Fischer–Tropsch”, Fuel, vol. 81, pp. 1625-1630, 2002
[6] Ma, W., Jacobs, G., Keogh, R. A., Bukur, D. B., & Davis, B. H., “Fischer–Tropsch synthesis: Effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25% Co/Al2O3”, Appl. Catal. A: Gen., vol. 437, pp. 1-9, 2012.
[7] Chen, Li., Ying, W. Y., & Fang, D. Y., “Effect of component impregnation sequence on catalytic performance of Ru-Co-ZrO2/γ-Al2O3 catalyst for Fischer-Tropsch synthesis”, Henan. Chem. Ind., vol. 25, pp. 16-19, 2008.
[8] Ma, W. P., Ding, Y. J., & Lin, L. W., “Fischer-Tropsch synthesis over activated-carbon-supported cobalt catalysts: effect of Co loading and promoters on catalyst performance”, Ind. Eng. Chem. Res., vol. 43, no. 10, pp. 2391-2398, 2004.
[9] Haddad, G. J., Chen, B., & Goodwin Jr, J. G., “Effect of La 3+ Promotion of Co/SiO2 on CO Hydrogenation”, J. Catal., vol. 161, no. 1, pp. 274-281, 1996.
[10] Wei, M., Okabe, K., Arakawa, H., & Teraoka, Y., “Synthesis and characterization of zirconium containing mesoporous silicates and the utilization as support of cobalt catalysts for Fischer–Tropsch synthesis”, Catal. Commun., vol. 5, no. 10, pp. 597-603, 2004.
[11] Wang, T., Ding, Y., Xiong, J., Yan, L., Zhu, H., Lu, Y., & Lin, L., “Effect of vanadium promotion on activated carbon-supported cobalt catalysts in Fischer–Tropsch synthesis”, Catal. Lett., vol. 107, no. 1-2, pp. 47-52, 2006.
[12] Morales, F., de Groot, F. M., Gijzeman, O. L., Mens, A., Stephan, O., & Weckhuysen, B. M., “Mn promotion effects in Co/TiO2 Fischer–Tropsch catalysts as investigated by XPS and STEM-EELS”, J. Catal., vol. 230, no. 2, pp. 301-308, 2005.
[13] Morales, F., de Groot, F. M., Glatzel, P., Kleimenov, E., Bluhm, H., Hävecker, M., ... & Weckhuysen, B. M., “In situ X-ray absorption of Co/Mn/TiO2 catalysts for Fischer-Tropsch synthesis”, J. Phys. Chem. B., vol. 108, no. 41, pp. 16201-16207, 2004.
[14] Huber, G. W., Butala, S. J., Lee, M. L., & Bartholomew, C. H. “Gd promotion of Co/SiO2 Fischer–Tropsch synthesis catalysts”, Catal. Lett., vol. 74, no. 1-2, pp. 45-48, 2001
[15] Satterfield, C. N., & Huff, G. A., “Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor”, J. Catal., vol. 73, no. 1, pp. 187-197, 1982.
[16] Friedel, R. A., & Anderson, R. B., “Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5-C8 Paraffin Isomers from Cobalt Catalyst”, J. Am. Chem. Soc., vol. 72, no. 3, pp. 1212-1215, 1950.
[17] Iglesia, E., Soled, S. L., & Fiato, R. A., “Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity”, J. Catal., vol. 137, no. 1, pp. 212-22, 1992.
[18] Huff, G. A., & Satterfield, C. N., “Evidence for two chain growth probabilities on iron catalysts in the Fischer-Tropsch synthesis”, J. Catal., vol. 85, no. 2, pp. 370-379, 1984
[19] Yang, Y., Pen, S., & Zhong, B., “A new product distribution formulation for Fischer-Tropsch synthesis. Effect of metal crystallite size distribution”, Catal. Lett., vol. 16, no. 3, pp. 351-357, 1992.
[20] Qian, W., Zhang, H., Ying, W., & Fang, D., “The comprehensive kinetics of Fischer-Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism”. Chem. Eng. J., vol. 228, pp. 526-534, 2013.
[21] Madon, R. J., & Iglesia, E., “The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts”, J. Catal., vol. 139, no. 2, pp. 576-590, 1993.