Preparation and Characterization of Silk/Diopside Composite Nanofibers via Electrospinning for Tissue Engineering Application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Preparation and Characterization of Silk/Diopside Composite Nanofibers via Electrospinning for Tissue Engineering Application

Authors: Abbas Teimouri, Leila Ghorbanian, Iren Dabirian

Abstract:

This work focused on preparation and characterizations of silk fibroin (SF)/nanodiopside nanoceramic via electrospinning process. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). The results confirmed that fabricated SF/diopside scaffolds improved cell attachment and proliferation. The results indicated that the electrospun of SF/nanodiopside nanofibrous scaffolds could be considered as ideal candidates for tissue engineering.

Keywords: Electrospinning, nanofibers, silk fibroin, diopside, composite scaffold.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1125389

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251

References:


[1] Q. Zhang, S. Yan, M. Li, Materials. Vol. 2 (2009), p. 2276.
[2] T. C. Holmes, Trends in Biotechnology. 20 (2002), p. 16.
[3] E. Wenk, H. P. Merkle, L. Meinel, Journal of Controlled Release. Vol. 150 (2011), p. 128.
[4] N. Bhardwaj, S.C. Kundu, Carbohydrate Polymers. Vol. 85 (2011), p. 325.
[5] R.L. Horan, K. Antle, A.L. Collette, Y.Z. Wang, J. Huang, J.E. Moreau, V. Volloch, D.L. Kaplan, G.H. Altman, Biomaterials. Vol. 26 (2005), p. 3385.
[6] M. Peter, P.T.S. Kumar, N.S. Binulal, S.V. Nair, H. Tamura, R. Jayakumar, Carbohydrate Polymers, Vol. 78 (2009), p. 926.
[7] R. Jayakumar, D. Menon, K. Manzoor, S. Nair, H. Tamura, Carbohydrate Polymers, Vol. 82 (2010), p. 227.
[8] S. Nakajima, Shika gakuho. Dental science reports, Vol. 90 (1990), p. 525-553.
[9] M. Ashizuka, Y. Aimoto, T. Okuno, Journal of the Ceramic Society of Japan, Vol. 97 (1989), p. 544.
[10] T. Nonami, S. Tsutsumi, Materials in Medicine, Vol. 10 (1999), p. 475.
[11] T. Nonami, MRS Proceedings, Cambridge Univ Press, 1991, pp. 87.
[12] T. Nonami, S. Tsutsumi, M. Fukuma, T. Urabe, J. Jpn. Soc. Biomater, Vol. 12 (1994), p. 274.
[13] Venugopal J, Ramakrishna S. Appl Biochem Biotechnol. Vol. 125 (2005), p. 147.
[14] K.T. Shalumon, N.S. Binulal, N. Selvamurugan, S.V. Nair, D. Menon, T. Furuike, H. Tamura, R. Jayakumar, Carbohyd. Polym. Vol. 77 (2009), p. 863.
[15] R. Jayakumar, M. Prabaharan, S.V. Nair, H. Tamura, Biotechnol. Adv. Vol. 28 (2010), p. 142.
[16] A. Greiner, J.H. Wendorff, Angew. Chem. Int. Ed. Vol. 46 (2007), p. 5670–5703.
[17] A. Teimouri, L. Ghorbanian, A.N. Chermahini, R. Emadi, Ceramics International, Vol. 40 (2014), p. 6405.
[18] L. Ghorbanian, R. Emadi, S.M. Razavi, H. Shin, A. Teimouri, International journal of biological macromolecules, Vol. 58 (2013), p. 275.
[19] Li G, Li P, Yang XP. Compos Sci Tech. Vol. 68(3-4) (2008), p. 987.
[20] S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Polymer Journal Vol. 35 (2003), p. 185.