Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

weighted sum Related Publications

3 Multidimensional Performance Tracking

Authors: C. Ardil

Abstract:

In this study, a model, together with a software tool that implements it, has been developed to determine the performance ratings of employees in an organization operating in the information technology sector using the indicators obtained from employees' online study data. Weighted Sum (WS) Method and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method based on multidimensional decision making approach were used in the study. WS and TOPSIS methods provide multidimensional decision making (MDDM) methods that allow all dimensions to be evaluated together considering specific weights, allowing employees to objectively evaluate the problem of online performance tracking. The application of WS and TOPSIS mathematical methods, which can combine alternatives with a large number of dimensions and reach simultaneous solution, has been implemented through an online performance tracking software. In the application of WS and TOPSIS methods, objective dimension weights were calculated by using entropy information (EI) and standard deviation (SD) methods from the data obtained by employees' online performance tracking method, decision matrix was formed by using performance scores for each employee, and a single performance score was calculated for each employee. Based on the calculated performance score, employees were given a performance evaluation decision. The results of Pareto set evidence and comparative mathematical analysis validate that employees' performance preference rankings in WS and TOPSIS methods are closely related. This suggests the compatibility, applicability, and validity of the proposed method to the MDDM problems in which a large number of alternative and dimension types are taken into account. With this study, an objective, realistic, feasible and understandable mathematical method, together with a software tool that implements it has been demonstrated. This is considered to be preferable because of the subjectivity, limitations and high cost of the methods traditionally used in the measurement and performance appraisal in the information technology sector.

Keywords: Performance Evaluation, Performance Management, standard deviation, weighted sum, entropy ─▒nformation, online performance tracking, multidimensional decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
2 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Routing, Multiobjective optimization, non-dominated sorting genetic algorithm, weighted sum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
1 Multiobjective Optimization Solution for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Routing, Multiobjective optimization, weighted sum, Non-dominated SortingGenetic Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912