Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

vector quantization Related Publications

9 Data Hiding by Vector Quantization in Color Image

Authors: Yung-Gi Wu

Abstract:

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

Keywords: data hiding, watermark, vector quantization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
8 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering

Authors: Elizabeth B. Varghese, M. Wilscy

Abstract:

A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.

Keywords: Face Recognition, vector quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
7 A High Quality Speech Coder at 600 bps

Authors: Yong ZHANG, Ruimin Hu

Abstract:

This paper presents a vocoder to obtain high quality synthetic speech at 600 bps. To reduce the bit rate, the algorithm is based on a sinusoidally excited linear prediction model which extracts few coding parameters, and three consecutive frames are grouped into a superframe and jointly vector quantization is used to obtain high coding efficiency. The inter-frame redundancy is exploited with distinct quantization schemes for different unvoiced/voiced frame combinations in the superframe. Experimental results show that the quality of the proposed coder is better than that of 2.4kbps LPC10e and achieves approximately the same as that of 2.4kbps MELP and with high robustness.

Keywords: Speech Coding, vector quantization, linear predicition, Mixed sinusoidal excitation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
6 Codebook Generation for Vector Quantization on Orthogonal Polynomials based Transform Coding

Authors: N. Kannan, R. Krishnamoorthi

Abstract:

In this paper, a new algorithm for generating codebook is proposed for vector quantization (VQ) in image coding. The significant features of the training image vectors are extracted by using the proposed Orthogonal Polynomials based transformation. We propose to generate the codebook by partitioning these feature vectors into a binary tree. Each feature vector at a non-terminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. The binary tree codebook is used for encoding and decoding the feature vectors. In the decoding process the feature vectors are subjected to inverse transformation with the help of basis functions of the proposed Orthogonal Polynomials based transformation to get back the approximated input image training vectors. The results of the proposed coding are compared with the VQ using Discrete Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) algorithm. The new algorithm results in a considerable reduction in computation time and provides better reconstructed picture quality.

Keywords: Image coding, orthogonal polynomials, vector quantization, Binary Tree Classifier, TSVQ

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
5 Voice Command Recognition System Based on MFCC and VQ Algorithms

Authors: Mahdi Shaneh, Azizollah Taheri

Abstract:

The goal of this project is to design a system to recognition voice commands. Most of voice recognition systems contain two main modules as follow “feature extraction" and “feature matching". In this project, MFCC algorithm is used to simulate feature extraction module. Using this algorithm, the cepstral coefficients are calculated on mel frequency scale. VQ (vector quantization) method will be used for reduction of amount of data to decrease computation time. In the feature matching stage Euclidean distance is applied as similarity criterion. Because of high accuracy of used algorithms, the accuracy of this voice command system is high. Using these algorithms, by at least 5 times repetition for each command, in a single training session, and then twice in each testing session zero error rate in recognition of commands is achieved.

Keywords: MFCC, vector quantization, Vocal tract, Voicecommand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645
4 Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook

Authors: H. B. Kekre, Tanuja K. Sarode

Abstract:

This paper presents a very simple and efficient algorithm for codebook search, which reduces a great deal of computation as compared to the full codebook search. The algorithm is based on sorting and centroid technique for search. The results table shows the effectiveness of the proposed algorithm in terms of computational complexity. In this paper we also introduce a new performance parameter named as Average fractional change in pixel value as we feel that it gives better understanding of the closeness of the image since it is related to the perception. This new performance parameter takes into consideration the average fractional change in each pixel value.

Keywords: Data Compression, Searching, vector quantization, encoding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
3 Modified Vector Quantization Method for Image Compression

Authors: K.Somasundaram, S.Domnic

Abstract:

A low bit rate still image compression scheme by compressing the indices of Vector Quantization (VQ) and generating residual codebook is proposed. The indices of VQ are compressed by exploiting correlation among image blocks, which reduces the bit per index. A residual codebook similar to VQ codebook is generated that represents the distortion produced in VQ. Using this residual codebook the distortion in the reconstructed image is removed, thereby increasing the image quality. Our scheme combines these two methods. Experimental results on standard image Lena show that our scheme can give a reconstructed image with a PSNR value of 31.6 db at 0.396 bits per pixel. Our scheme is also faster than the existing VQ variants.

Keywords: Image Compression, vector quantization, Residual Codebook

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1101
2 Speech Data Compression using Vector Quantization

Authors: H. B. Kekre, Tanuja K. Sarode

Abstract:

Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table shows computational complexity of these three algorithms. Here we have introduced a new performance parameter Average Fractional Change in Speech Sample (AFCSS). Our FCG algorithm gives far better performance considering mean absolute error, AFCSS and complexity as compared to others.

Keywords: Data Compression, Speech Coding, vector quantization, encoding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1 A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System

Authors: M. Debyeche, J.P Haton, A. Houacine

Abstract:

The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.

Keywords: Speech Recognition, Arabic language, hidden Markov model, vector quantization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688