Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Time Series Analysis Related Publications

4 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data

Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu

Abstract:

Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant  of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual  value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.

Keywords: Time Series Analysis, Food Waste Reduction, Sustainable Development Goals, particle filter, Taylor's law, point of sales

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96
3 Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series

Authors: Tushnik Sarkar, Mofazzal H. Khondekar, Subrata Banerjee

Abstract:

This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1st January, 1997 to 28th October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multi-fractal Detrended Fluctuation Analysis (MFDFA) method has been implemented on the signal which is under investigation to perform this task. Furthermore, the singularity spectra of the signals have been also obtained to gauge the extent of the multifractality of the time series signal.

Keywords: Time Series Analysis, detrended fluctuation analysis, generalized hurst exponent, holder exponents, multifractal exponent, multifractal spectrum, singularity spectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
2 Urban Air Pollution – Trend and Forecasting of Major Pollutants by Timeseries Analysis

Authors: A.L. Seetharam, B.L. Udaya Simha

Abstract:

The Bangalore City is facing the acute problem of pollution in the atmosphere due to the heavy increase in the traffic and developmental activities in recent years. The present study is an attempt in the direction to assess trend of the ambient air quality status of three stations, viz., AMCO Batteries Factory, Mysore Road, GRAPHITE INDIA FACTORY, KHB Industrial Area, Whitefield and Ananda Rao Circle, Gandhinagar with respect to some of the major criteria pollutants such as Total Suspended particular matter (SPM), Oxides of nitrogen (NOx), and Oxides of sulphur (SO2). The sites are representative of various kinds of growths viz., commercial, residential and industrial, prevailing in Bangalore, which are contributing to air pollution. The concentration of Sulphur Dioxide (SO2) at all locations showed a falling trend due to use of refined petrol and diesel in the recent years. The concentration of Oxides of nitrogen (NOx) showed an increasing trend but was within the permissible limits. The concentration of the Suspended particular matter (SPM) showed the mixed trend. The correlation between model and observed values is found to vary from 0.4 to 0.7 for SO2, 0.45 to 0.65 for NOx and 0.4 to 0.6 for SPM. About 80% of data is observed to fall within the error band of ±50%. Forecast test for the best fit models showed the same trend as actual values in most of the cases. However, the deviation observed in few cases could be attributed to change in quality of petro products, increase in the volume of traffic, introduction of LPG as fuel in many types of automobiles, poor condition of roads, prevailing meteorological conditions, etc.

Keywords: Urban air pollution, Time Series Analysis, Bangalore

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1 Predicting DHF Incidence in Northern Thailand using Time Series Analysis Technique

Authors: S. Wongkoon, M. Jaroensutasinee, K. Jaroensutasinee, M. Pollar

Abstract:

This study aimed at developing a forecasting model on the number of Dengue Haemorrhagic Fever (DHF) incidence in Northern Thailand using time series analysis. We developed Seasonal Autoregressive Integrated Moving Average (SARIMA) models on the data collected between 2003-2006 and then validated the models using the data collected between January-September 2007. The results showed that the regressive forecast curves were consistent with the pattern of actual values. The most suitable model was the SARIMA(2,0,1)(0,2,0)12 model with a Akaike Information Criterion (AIC) of 12.2931 and a Mean Absolute Percent Error (MAPE) of 8.91713. The SARIMA(2,0,1)(0,2,0)12 model fitting was adequate for the data with the Portmanteau statistic Q20 = 8.98644 ( x20,95= 27.5871, P>0.05). This indicated that there was no significant autocorrelation between residuals at different lag times in the SARIMA(2,0,1)(0,2,0)12 model.

Keywords: Dengue, Time Series Analysis, SARIMA, Northern Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610