Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Spline interpolation Related Publications

4 Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation

Authors: Hanita Daud, Noorhana Yahya, Vijanth Sagayan, Muizuddin Talib

Abstract:

This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.

Keywords: mean square error, Spline interpolation, Sea Bed Logging, Controlled Source Electromagnetic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
3 A New Quadrature Rule Derived from Spline Interpolation with Error Analysis

Authors: Hadi Taghvafard

Abstract:

We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.

Keywords: Error Analysis, quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
2 Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

Authors: Ahmad Izani Md. Ismail, Ahmad Abd. Majid, Nur Nadiah Abd Hamid

Abstract:

Linear two-point boundary value problems of order two are solved using cubic trigonometric B-spline interpolation method (CTBIM). Cubic trigonometric B-spline is a piecewise function consisting of trigonometric equations. This method is tested on some problems and the results are compared with cubic B-spline interpolation method (CBIM) from the literature. CTBIM is found to approximate the solution slightly more accurately than CBIM if the problems are trigonometric.

Keywords: Spline interpolation, trigonometric B-spline, two-point boundary valueproblem, cubic spline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1 Two-dimensional Differential Transform Method for Solving Linear and Non-linear Goursat Problem

Authors: H. Taghvafard, G. H. Erjaee

Abstract:

A method for solving linear and non-linear Goursat problem is given by using the two-dimensional differential transform method. The approximate solution of this problem is calculated in the form of a series with easily computable terms and also the exact solutions can be achieved by the known forms of the series solutions. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Several examples are given to demonstrate the reliability and the performance of the presented method.

Keywords: Error Analysis, quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870