Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

sliding mode controller Related Publications

2 Sliding Mode Control of Autonomous Underwater Vehicles

Authors: Mohammad Azadi, Ahmad Forouzan Tabar, Alireza Alesaadi

Abstract:

This paper describes a sliding mode controller for autonomous underwater vehicles (AUVs). The dynamic of AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of AUV and improve trajectory tracking. Moreover, the proposed controller can profoundly attenuate the effects of uncertainties and external disturbances in the closed-loop system. Using the Lyapunov theory the boundedness of AUV tracking errors and the stability of the proposed control system are also guaranteed. Numerical simulation studies of an AUV are included to illustrate the effectiveness of the presented approach.

Keywords: Electronics Engineering, lyapunov stability, sliding mode controller, Autonomous Underwater Vehicle (AUV)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
1 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode

Authors: M. S. Boucherit, L. Barazane, N. Ouldcherchali, A. Morsli

Abstract:

In this study, we proposed two techniques to track the maximum power point (MPPT) of a photovoltaic system. The first is an intelligent control technique, and the second is robust used for variable structure system. In fact the characteristics I-V and P–V of the photovoltaic generator depends on the solar irradiance and temperature. These climate changes cause the fluctuation of maximum power point; a maximum power point tracking technique (MPPT) is required to maximize the output power. For this we have adopted a control by fuzzy logic (FLC) famous for its stability and robustness. And a Siding Mode Control (SMC) widely used for variable structure system. The system comprises a photovoltaic panel (PV), a DC-DC converter, which is considered as an adaptation stage between the PV and the load. The modelling and simulation of the system is developed using MATLAB/Simulink. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or it is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.

Keywords: Fuzzy Logic Controller, Photovoltaic System, sliding mode controller, maximum power point, tracker

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727