Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

sheet metal forming Related Publications

3 Forming Limit Analysis of DP600-800 Steels

Authors: L. P. Moreira, M. C. Cardoso

Abstract:

In this work, the plastic behaviour of cold-rolled zinc coated dual-phase steel sheets DP600 and DP800 grades is firstly investigated with the help of uniaxial, hydraulic bulge and Forming Limit Curve (FLC) tests. The uniaxial tensile tests were performed in three angular orientations with respect to the rolling direction to evaluate the strain-hardening and plastic anisotropy. True stressstrain curves at large strains were determined from hydraulic bulge testing and fitted to a work-hardening equation. The limit strains are defined at both localized necking and fracture conditions according to Nakajima’s hemispherical punch procedure. Also, an elasto-plastic localization model is proposed in order to predict strain and stress based forming limit curves. The investigated dual-phase sheets showed a good formability in the biaxial stretching and drawing FLC regions. For both DP600 and DP800 sheets, the corresponding numerical predictions overestimated and underestimated the experimental limit strains in the biaxial stretching and drawing FLC regions, respectively. This can be attributed to the restricted failure necking condition adopted in the numerical model, which is not suitable to describe the tensile and shear fracture mechanisms in advanced high strength steels under equibiaxial and biaxial stretching conditions.

Keywords: numerical modeling, Advanced high strength steels, sheet metal forming, forming limit curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
2 Efficient Oxyhydrogen Mixture Determination in Gas Detonation Forming

Authors: Morteza Khaleghi, Babak Seyed Aghazadeh, Hosein Bisadi

Abstract:

Oxyhydrogen is a mixture of Hydrogen (H2) and Oxygen (O2) gases. Detonative mixtures of oxyhydrogens with various combinations of these two gases were used in Gas Detonation Forming (GDF) to form sheets of mild steel. In die forming experiments, three types of conical dies with apex angles of 60, 90 and 120 degrees were used. Pressure of mixtures inside the chamber before detonation was varied from 3 Bar to 5 Bar to investigate the effect of pre-detonation pressure in the forming process. On each conical die, several experiments with different percentages of Hydrogen were carried out to determine the optimum gaseous mixture. According to our results the best forming process occurred when approximately 50-70%. Hydrogen was employed in the mixture. Furthermore, the experimental results were compared to the ones from FEM analysis. The FEM simulation results of thickness strain, hoop strain, thickness variation and deformed geometry are promising.

Keywords: Gas Detonation, sheet metal forming, FEM, Oxyhydrogen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
1 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm

Authors: D. Singh, R. Yousefi, M. Boroushaki

Abstract:

Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.

Keywords: Neural Network, Genetic Algorithm, sheet metal forming, Deep-Drawing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773