Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

SfM Related Publications

2 Simulation of the Pedestrian Flow in the Tawaf Area Using the Social Force Model

Authors: Zarita Zainuddin, Kumatha Thinakaran, Mohammed Shuaib

Abstract:

In today-s modern world, the number of vehicles is increasing on the road. This causes more people to choose walking instead of traveling using vehicles. Thus, proper planning of pedestrians- paths is important to ensure the safety of pedestrians in a walking area. Crowd dynamics study the pedestrians- behavior and modeling pedestrians- movement to ensure safety in their walking paths. To date, many models have been designed to ease pedestrians- movement. The Social Force Model is widely used among researchers as it is simpler and provides better simulation results. We will discuss the problem regarding the ritual of circumambulating the Ka-aba (Tawaf) where the entrances to this area are usually congested which worsens during the Hajj season. We will use the computer simulation model SimWalk which is based on the Social Force Model to simulate the movement of pilgrims in the Tawaf area. We will first discuss the effect of uni and bi-directional flows at the gates. We will then restrict certain gates to the area as the entrances only and others as exits only. From the simulations, we will study the effect of the distance of other entrances from the beginning line and their effects on the duration of pilgrims circumambulate Ka-aba. We will distribute the pilgrims at the different entrances evenly so that the congestion at the entrances can be reduced. We would also discuss the various locations and designs of barriers at the exits and its effect on the time taken for the pilgrims to exit the Tawaf area.

Keywords: entrance, SfM, circumambulation, Ka'aba, pedestrian flow, Tawaf, exit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
1 Rock Textures Classification Based on Textural and Spectral Features

Authors: Somkait Udomhunsakul, Tossaporn Kachanubal

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Neural Network, texture classification, SfM, rock texture classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671