Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

semi-infinite Related Publications

3 Using Hermite Function for Solving Thomas-Fermi Equation

Authors: F. Bayatbabolghani, K. Parand

Abstract:

In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.

Keywords: collocation method, semi-infinite, Hermite function, Thomas-Fermi equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
2 Localized Non-Stability of the Semi-Infinite Elastic Orthotropic Plate

Authors: Reza Sharifian, Vagharshak Belubekyan

Abstract:

This paper is concerned with an investigation into the localized non-stability of a thin elastic orthotropic semi-infinite plate. In this study, a semi-infinite plate, simply supported on two edges and different boundary conditions, clamped, hinged, sliding contact and free on the other edge, are considered. The mathematical model is used and a general solution is presented the conditions under which localized solutions exist are investigated.

Keywords: orthotropic, semi-infinite, Localized, Non-stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
1 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Porous Media, tau method, semi-infinite, nonlinear ODE, rational Chebyshev

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589