Search results for: trajectory tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 649

Search results for: trajectory tracking

499 Real Time Detection, Tracking and Recognition of Medication Intake

Authors: H. H. Huynh, J. Meunier, J.Sequeira, M.Daniel

Abstract:

In this paper, the detection and tracking of face, mouth, hands and medication bottles in the context of medication intake monitoring with a camera is presented. This is aimed at recognizing medication intake for elderly in their home setting to avoid an inappropriate use. Background subtraction is used to isolate moving objects, and then, skin and bottle segmentations are done in the RGB normalized color space. We use a minimum displacement distance criterion to track skin color regions and the R/G ratio to detect the mouth. The color-labeled medication bottles are simply tracked based on the color space distance to their mean color vector. For the recognition of medication intake, we propose a three-level hierarchal approach, which uses activity-patterns to recognize the normal medication intake activity. The proposed method was tested with three persons, with different medication intake scenarios, and gave an overall precision of over 98%.

Keywords: Activity recognition, background subtraction, tracking, medication intake, video surveillance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
498 Target Tracking in Sensor Networks: A Distributed Constraint Satisfaction Approach

Authors: R.Mostafaei, A.Habiboghli, M.R.Meybodi

Abstract:

In distributed resource allocation a set of agents must assign their resources to a set of tasks. This problem arises in many real-world domains such as distributed sensor networks, disaster rescue, hospital scheduling and others. Despite the variety of approaches proposed for distributed resource allocation, a systematic formalization of the problem, explaining the different sources of difficulties, and a formal explanation of the strengths and limitations of key approaches is missing. We take a step towards this goal by using a formalization of distributed resource allocation that represents both dynamic and distributed aspects of the problem. In this paper we present a new idea for target tracking in sensor networks and compare it with previous approaches. The central contribution of the paper is a generalized mapping from distributed resource allocation to DDCSP. This mapping is proven to correctly perform resource allocation problems of specific difficulty. This theoretical result is verified in practice by a simulation on a realworld distributed sensor network.

Keywords: Distributed CSP, Target Tracking, Sensor Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
497 Optimization of Transmitter Aperture by Genetic Algorithm in Optical Satellite

Authors: Karim Kemih, Yacine Yaiche, Malek Benslama

Abstract:

To establish optical communication between any two satellites, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is the use of very small transmitter beam divergence angles of too narrow divergence angle is that the transmitter beam may sometimes miss the receiver satellite, due to pointing vibrations. In this paper we propose the use of genetic algorithm to optimize the BER as function of transmitter optics aperture.

Keywords: Optical Satellite Communication, Genetic Algorithm, Transmitter Optics Aperture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
496 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: Basketball, deep learning, feature extraction, single-camera, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
495 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.

Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
494 Dynamic Modeling of Tow Flexible Link Manipulators

Authors: E. Abedi, A. Ahmadi Nadooshan, S. Salehi

Abstract:

Modeling and vibration of a flexible link manipulator with tow flexible links and rigid joints are investigated which can include an arbitrary number of flexible links. Hamilton principle and finite element approach is proposed to model the dynamics of flexible manipulators. The links are assumed to be deflection due to bending. The association between elastic displacements of links is investigated, took into account the coupling effects of elastic motion and rigid motion. Flexible links are treated as Euler-Bernoulli beams and the shear deformation is thus abandoned. The dynamic behavior due to flexibility of links is well demonstrated through numerical simulation. The rigid-body motion and elastic deformations are separated by linearizing the equations of motion around the rigid body reference path. Simulation results are shown on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics remarkably well. The proposed method can be used in both dynamic simulation and controller design.

Keywords: Flexible manipulator, flexible link, dynamicmodeling, end point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427
493 Tracking Objects in Color Image Sequences: Application to Football Images

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
492 Comparison of Zero Voltage Soft Switching and Hard Switching Boost Converter with Maximum Power Point Tracking

Authors: N. Ravi Kumar, R. Kamalakannan

Abstract:

The inherent nature of normal boost converter has more voltage stress across the power electronics switch and ripple. The presented formation of the front end rectifier stage for a photovoltaic (PV) organization is mainly used to give the supply. Further increasing of the solar efficiency is achieved by connecting the zero voltage soft switching boost converter. The zero voltage boost converter is used to convert the low level DC voltage to high level DC voltage. The inherent nature of zero voltage switching boost converter is used to shrink the voltage tension across the power electronics switch and ripple. The input stage allows the determined power point tracking to be used to extract supreme power from the sun when it is available. The hardware setup was implemented by using PIC Micro controller (16F877A).

Keywords: Boost converter, duty cycle, hard switching, MOSFET, maximum power point tracking, photovoltaic, soft switching, zero voltage switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
491 Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography

Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song

Abstract:

A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.

Keywords: Common-path OCT, FD-OCT, OCT, Tracking algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
490 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
489 Human Motion Capture: New Innovations in the Field of Computer Vision

Authors: Najm Alotaibi

Abstract:

Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.

Keywords: Human Motion Capture, Computer Vision, Vision based, Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
488 Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking

Authors: Xinyue Zhao, Yutaka Satoh, Hidenori Takauji, Shun'ichi Kaneko

Abstract:

A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method.

Keywords: Hybrid feature, adaptive Particle Filter, robust Object Tracking, Grayscale Arranging Pairs (GAP) feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
487 Multiplayer RC-Car Driving System in a Collaborative Augmented Reality Environment

Authors: Kikuo Asai, Yuji Sugimoto

Abstract:

We developed a prototype system for multiplayer RC-car driving in a collaborative augmented reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment.

Keywords: Multiplayer, RC-car, Collaborative Environment, Augmented Reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
486 Maximum Power Point Tracking Using FLC Tuned with GA

Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli

Abstract:

The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.

Keywords: Fuzzy logic controller (FLC), fuzzy logic (FL), genetic algorithm (GA), maximum power point (MPP), maximum power point tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
485 Performance Analysis of a Flexible Manufacturing Line Operated Under Surplus-based Production Control

Authors: K. K. Starkov, A. Y. Pogromsky, I. J. B. F. Adan, J. E. Rooda

Abstract:

In this paper we present our results on the performance analysis of a multi-product manufacturing line. We study the influence of external perturbations, intermediate buffer content and the number of manufacturing stages on the production tracking error of each machine in the multi-product line operated under a surplusbased production control policy. Starting by the analysis of a single machine with multiple production stages (one for each product type), we provide bounds on the production error of each stage. Then, we extend our analysis to a line of multi-stage machines, where similarly, bounds on each production tracking error for each product type, as well as buffer content are obtained. Details on performance of the closed-loop flow line model are illustrated in numerical simulations.

Keywords: Flexible manufacturing systems, tracking systems, discrete time systems, production control, boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
484 On Climbing Winding Stairs for a Robotic Wheelchair

Authors: Chun-Ta Chen, Te-Tan Liao, Hoang-Vuong Pham

Abstract:

In this paper motion analysis on a winding stair-climbing is investigated using our proposed rotational arm type of robotic wheelchair. For now, the robotic wheelchair is operated in an open mode to climb winding stairs by a dynamic turning, therefore, the dynamics model is required to ensure a passenger-s safety. Equations of motion based on the skid-steering analysis are developed for the trajectory planning and motion analysis on climbing winding stairs. Since the robotic wheelchair must climb a winding staircase stably, the winding trajectory becomes a constraint equation to be followed, and the Baumgarte-s method is used to solve for the constrained dynamics equations. Experimental results validate the behavior of the prototype as it climbs a winding stair.

Keywords: Climb, robotic wheelchair, skid-steering, windingstair .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
483 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach

Authors: M. Zamurad Shah, M. Kemal Özgören, Raza Samar

Abstract:

This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.

Keywords: Unmanned Aerial Vehicles, Sliding mode control, 3D Guidance, Path following, trajectory tracking, nonlinear sliding manifolds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
482 A Real-Time Tracking System Developed for an Interactive Stage Performance

Authors: S. Hu, J. Mortensen, Bernard F. Buxton

Abstract:

A real-time tracking system was built to track performers on an interactive stage. Using an ordinary, up to date, desktop workstation, the performers- silhouette was segmented from the background and parameterized by calculating the normalized central image moments. In the stage system, the silhouette moments were then sent to a parallel workstation, which used them to generate corresponding 3D virtual geometry and projected the generated graphic back onto the stage.

Keywords: Image moment, interactive stage, real-time, silhouette.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
481 Aiming at Optimization of Tracking Technology through Seasonally Tilted Sun Trackers: An Indian Perspective

Authors: Sanjoy Mukherjee

Abstract:

Discussions on concepts of Single Axis Tracker (SAT) are becoming more and more apt for developing countries like India not just as an advancement in racking technology but due to the utmost necessity of reaching at the lowest Levelized Cost of Energy (LCOE) targets. With this increasing competition and significant fall in feed-in tariffs of solar PV projects, developers are under constant pressure to secure investment for their projects and eventually earn profits from them. Moreover, being the second largest populated country, India suffers from scarcity of land because of higher average population density. So, to mitigate the risk of this dual edged sword with reducing trend of unit (kWh) cost at one side and utilization of land on the other, tracking evolved as the call of the hour. Therefore, the prime objectives of this paper are not only to showcase how STT proves to be an effective mechanism to get more gain in Global Incidence in collector plane (Ginc) with respect to traditional mounting systems but also to introduce Seasonally Tilted Tracker (STT) technology as a possible option for high latitude locations.

Keywords: Tracking system, grid-connected PV systems, cost reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
480 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process

Authors: Petia Georgieva, Sebastião Feyo de Azevedo

Abstract:

This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.

Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
479 People Counting in Transport Vehicles

Authors: Sebastien Harasse, Laurent Bonnaud, Michel Desvignes

Abstract:

Counting people from a video stream in a noisy environment is a challenging task. This project aims at developing a counting system for transport vehicles, integrated in a video surveillance product. This article presents a method for the detection and tracking of multiple faces in a video by using a model of first and second order local moments. An iterative process is used to estimate the position and shape of multiple faces in images, and to track them. the trajectories are then processed to count people entering and leaving the vehicle.

Keywords: face detection, tracking, counting, local statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
478 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
477 FITTER - A Framework for Integrating Activity Tracking Technologies into Electric Recreation for Children and Adolescents

Authors: R. Altamimi, G. Skinner, K. Nesbitt

Abstract:

Encouraging physical activity amongst children and adolescents is becoming an increasingly relevant issue in modern society. Studies have shown that involving children and adolescents in physical activity is essential for their physical, mental and social development. However, with technology playing an increasingly important role in reducing physical work it is becoming more critical to incorporate adequate physical activities into our lives. One way to overcome this problem is to harness technology so that it promotes physical activities, for example, by motivating children and adolescents to exercise more. This paper describes a promising solution to the question of how to increase levels of physical activity in children and adolescents by combining gaming technologies with exercise tracking goals. This research describes a framework called FITTER (Framework for Integrating activity Tracking Technologies for Electronic Recreation) that combines video game play with more traditional, non-computer physical activities.

Keywords: Exergames, Home-based eHealth, Human-computer Interaction, Natural User Interfaces, Wearable Health Informatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
476 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets

Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi

Abstract:

In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.

Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
475 On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation

Authors: M. A. Masnadi-Shirazi, S. A. Banani

Abstract:

In this paper a comprehensive algorithm is presented to alleviate the undesired simultaneous effects of target maneuvering, observed glint noise distribution, and colored noise spectrum using online colored glint noise parameter estimation. The simulation results illustrate a significant reduction in the root mean square error (RMSE) produced by the proposed algorithm compared to the algorithms that do not compensate all the above effects simultaneously.

Keywords: Glint noise, IMM, Kalman Filter, Kinematics, Target Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
474 Motion Control of an Autonomous Surface Vessel for Enhanced Situational Awareness

Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja

Abstract:

This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.

Keywords: Autonomous surface vessels, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
473 Lower energy Gait Pattern Generation in 5-Link Biped Robot Using Image Processing

Authors: Byounghyun Kim, Youngjoon Han, Hernsoo Hahn

Abstract:

The purpose of this study is to find natural gait of biped robot such as human being by analyzing the COG (Center Of Gravity) trajectory of human being's gait. It is discovered that human beings gait naturally maintain the stability and use the minimum energy. This paper intends to find the natural gait pattern of biped robot using the minimum energy as well as maintaining the stability by analyzing the human's gait pattern that is measured from gait image on the sagittal plane and COG trajectory on the frontal plane. It is not possible to apply the torques of human's articulation to those of biped robot's because they have different degrees of freedom. Nonetheless, human and 5-link biped robots are similar in kinematics. For this, we generate gait pattern of the 5-link biped robot by using the GA algorithm of adaptation gait pattern which utilize the human's ZMP (Zero Moment Point) and torque of all articulation that are measured from human's gait pattern. The algorithm proposed creates biped robot's fluent gait pattern as that of human being's and to minimize energy consumption because the gait pattern of the 5-link biped robot model is modeled after consideration about the torque of human's each articulation on the sagittal plane and ZMP trajectory on the frontal plane. This paper demonstrate that the algorithm proposed is superior by evaluating 2 kinds of the 5-link biped robot applied to each gait patterns generated both in the general way using inverse kinematics and in the special way in which by considering visuality and efficiency.

Keywords: 5-link biped robot, gait pattern, COG (Center OfGravity), ZMP (Zero Moment Point).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
472 Optimization of Solar Tracking Systems

Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer

Abstract:

In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.

Keywords: Clouds detection, fuzzy inference systems, images processing, sun trackers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
471 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation

Authors: O. Maklouf, Ahmed Abdulla

Abstract:

A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers have looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.

Keywords: GPS, ParIMU, INS, Kalman Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817
470 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions

Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*

Abstract:

Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833