Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: tokamak

4 On Use of Semiconductor Detector Arrays on COMPASS Tokamak

Authors: V. Weinzettl, M. Imrisek, J. Havlicek, J. Mlynar, D. Naydenkova, P. Hacek, M. Hron, F. Janky, D. Sarychev, M. Berta, A. Bencze, T. Szabolics

Abstract:

Semiconductor detector arrays are widely used in high-temperature plasma diagnostics. They have a fast response, which allows observation of many processes and instabilities in tokamaks. In this paper, there are reviewed several diagnostics based on semiconductor arrays as cameras, AXUV photodiodes (referred often as fast “bolometers") and detectors of both soft X-rays and visible light installed on the COMPASS tokamak recently. Fresh results from both spring and summer campaigns in 2012 are introduced. Examples of the utilization of the detectors are shown on the plasma shape determination, fast calculation of the radiation center, two-dimensional plasma radiation tomography in different spectral ranges, observation of impurity inflow, and also on investigation of MHD activity in the COMPASS tokamak discharges.

Keywords: Bolometry, plasma diagnostics, soft X-rays, tokamak.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
3 Artificial Neural Networks for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation to the characterization and classification of measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artifical Neural Networks have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compares with earlier methods.

Keywords: Tokamak, sensors, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
2 Analytical Solutions for Geodesic Acoustic Eigenmodes in Tokamak Plasmas

Authors: Victor I. Ilgisonis, Ludmila V. Konovaltseva, Vladimir P. Lakhin, Ekaterina A. Sorokina

Abstract:

The analytical solutions for geodesic acoustic eigenmodes in tokamak plasmas with circular concentric magnetic surfaces are found. In the frame of ideal magnetohydrodynamics the dispersion relation taking into account the toroidal coupling between electrostatic perturbations and electromagnetic perturbations with poloidal mode number |m| = 2 is derived. In the absence of such a coupling the dispersion relation gives the standard continuous spectrum of geodesic acoustic modes. The analysis of the existence of global eigenmodes for plasma equilibria with both off-axis and on-axis maximum of the local geodesic acoustic frequency is performed.

Keywords: Tokamak, MHD, geodesic acoustic mode, eigenmode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.

Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF