Search results for: temperature variations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2966

Search results for: temperature variations

2816 Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field

Authors: Zone-Ching Lin, Meng-Hua Lin, Ying-Chih Hsu

Abstract:

This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.

Keywords: Quasi-steady molecular statics, Nanoscale orthogonal cutting, Finite difference, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
2815 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique

Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi

Abstract:

This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity (  ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.

Keywords: Crystalline, CuAlS2, evaporation, resistivity, sulfurisation, thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
2814 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor

Authors: Amira Zrelli, Tahar Ezzeddine

Abstract:

Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.

Keywords: Optical fiber, strain, temperature, humidity, measurement, Bragg sensor, SHM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
2813 Effect of Band Contact on the Temperature Distribution for Dry Friction Clutch

Authors: Oday I. Abdullah, J. Schlattmann

Abstract:

In this study, the two dimensional heat conduction problem for the dry friction clutch disc is modeled mathematically analysis and is solved numerically using finite element method, to determine the temperature field when band contacts occurs between the rubbing surfaces during the operation of an automotive clutch. Temperature calculation have been made for contact area of different band width and the results obtained compared with these attained when complete contact occurs. Furthermore, the effects of slipping time and sliding velocity function are investigated as well. Both single and repeated engagements made at regular interval are considered.

Keywords: Band contact, dry friction clutch, frictional heating, temperature field, 2D FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3582
2812 Changes of Poultry Meat Chemical Composition, in Relationship with Lighting Schedule

Authors: P. C. Boisteanu, M. G. Usturoi, Roxana Lazar, B. V. Avarvarei

Abstract:

The paper is included within the framework of a complex research program, which was initiated from the hypothesis arguing on the existence of a correlation between pineal indolic and peptide hormones and the somatic development rhythm, including thus the epithalamium-epiphysis complex involvement. At birds, pineal gland contains a circadian oscillator, playing a main role in the temporal organization of the cerebral functions. The secretion of pineal indolic hormones is characterized by a high endogenous rhythmic alternation, modulated by the light/darkness (L/D) succession and by temperature as well. The research has been carried out using 100 chicken broilers - “Ross" commercial hybrid, randomly allocated in two experimental batches: Lc batch, reared under a 12L/12D lighting schedule and Lexp batch, which was photic pinealectomised through continuous exposition to light (150 lux, 24 hours, 56 days). Chemical and physical features of the meat issued from breast fillet and thighs muscles have been studied, determining the dry matter, proteins, fat, collagen, salt content and pH value, as well. Besides the variations of meat chemical composition in relation with lighting schedule, other parameters have been studied: live weight dynamics, feed intake and somatic development degree. The achieved results became significant since chickens have 7 days of age, some variations of the studied parameters being registered, revealing that the pineal gland physiologic activity, in relation with the lighting schedule, could be interpreted through the monitoring of the somatic development technological parameters, usually studied within the chicken broilers rearing aviculture practice.

Keywords: lighting schedule, physic-chemical characteristics ofmeat, pineal gland at birds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
2811 Mass Transfer of Palm Kernel Oil under Supercritical Conditions

Authors: I. Norhuda, A. K. Mohd Omar

Abstract:

The purpose of the study was to determine the amount of Palm Kernel Oil (PKO) extracted from a packed bed of palm kernels in a supercritical fluid extractor using supercritical carbon dioxide (SC-CO2) as an environmental friendly solvent. Further, the study sought to ascertain the values of the overall mass transfer coefficient (K) of PKO evaluation through a mass transfer model, at constant temperature of 50 °C, 60 °C, and 70 °C and pressures range from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa respectively. Finally, the study also seeks to demonstrate the application of the overall mass transfer coefficient values in relation to temperature and pressure. The overall mass transfer coefficient was found to be dependent pressure at each constant temperature of 50 °C, 60 °C and 70 °C. The overall mass transfer coefficient for PKO in a packed bed of palm kernels was found to be in the range of 1.21X 10-4 m min-1 to 1.72 X 10-4 m min-1 for a constant temperature of 50 °C and in the range of 2.02 X 10-4 m min-1 to 2.43 X 10-4 m min-1 for a constant temperature of 60 °C. Similar increasing trend of the overall mass transfer coefficient from 1.77 X 10-4 m min-1 to 3.64 X 10-4 m min-1 was also observed at constant temperature of 70 °C within the same pressure range from 27.6 MPa to 48.3 MPa.

Keywords: Overall Mass Transfer Coefficient (D), Supercritical Carbon Dioxide (SC-CO2), Palm Kernel Oil (PKO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
2810 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution

Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie

Abstract:

Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.

Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
2809 Modelling Extreme Temperature in Malaysia Using Generalized Extreme Value Distribution

Authors: Husna Hasan, Norfatin Salam, Mohd Bakri Adam

Abstract:

Extreme temperature of several stations in Malaysia is modelled by fitting the monthly maximum to the Generalized Extreme Value (GEV) distribution. The Mann-Kendall (MK) test suggests a non-stationary model. Two models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. Results show that half of the stations favour a model which is linear for the location parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.

Keywords: Extreme temperature, extreme value, return level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
2808 Temperature Investigations in Two Type of Crimped Connection Using Experimental Determinations

Authors: C. F. Ocoleanu, A. I. Dolan, G. Cividjian, S. Teodorescu

Abstract:

In this paper we make a temperature investigations in two type of superposed crimped connections using experimental determinations. All the samples use 8 copper wire 7.1 x 3 mm2 crimped by two methods: the first method uses one crimp indents and the second is a proposed method with two crimp indents. The ferrule is a parallel one. We study the influence of number and position of crimp indents. The samples are heated in A.C. current at different current values until steady state heating regime. After obtaining of temperature values, we compare them and present the conclusion.

Keywords: Crimped connections, experimental determinations, heat transfer temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
2807 Drive-Related Behaviors as Elements of Thinking

Authors: Peter Pfeifer, Julian Pfeifer, Niko Pfeifer

Abstract:

Information processing is at the focus of brain and cognition research. This work has a different perspective, it starts with behaviors. The detailed analysis of behaviors leads to the discovery that a significant proportion of them are based on only five basic drives. These basic drives are combinable, and the combinations result in the diversity of human behavior and thinking. The key elements are drive memories. They collect memories of drive-related situations and feelings. They contain variations of basic drives in numerous areas of life and build combinations with different meanings depending on the area. Human thinking could be explained with variations on these nested combinations of basic drives.

Keywords: Cognitive modeling, psycholinguistics, psychology, psychophysiology of cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
2806 High Temperature Hydrogen Sensors Based On Pd/Ta2O5/SiC MOS Capacitor

Authors: J. H. Choi, S. J. Kim, M. S. Jung, S. J. Kim, S. J. Joo, S. C. Kim

Abstract:

There are a many of needs for the development of SiC-based hydrogen sensor for harsh environment applications. We fabricated and investigated Pd/Ta2O5/SiC-based hydrogen sensors with MOS capacitor structure for high temperature process monitoring and leak detection applications in such automotive, chemical and petroleum industries as well as direct monitoring of combustion processes. In this work, we used silicon carbide (SiC) as a substrate to replace silicon which operating temperatures are limited to below 200°C. Tantalum oxide was investigated as dielectric layer which has high permeability for hydrogen gas and high dielectric permittivity, compared with silicon dioxide or silicon nitride. Then, electrical response properties, such as I-V curve and dependence of capacitance on hydrogen concentrations were analyzed in the temperature ranges of room temperature to 500°C for performance evaluation of the sensor.

Keywords: High temperature, hydrogen sensor, SiC, Ta2O5 dielectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
2805 Analysis on Spatiotemporal Pattern of Land Surface Temperature in Kunming City, China

Authors: Jinrui Ren, Li Wu

Abstract:

Anthropogenic activities and changes of underlying surface affect the temporal and spatial distribution of surface temperature in Kunming. Taking Kunming city as the research area, the surface temperature in 2000, 2010 and 2020 as the research object, using ENVI 5.3 and ArcGIS 10.8 as auxiliary tools, and based on the spatial autocorrelation method, this paper devoted to exploring the interactions among the changes of surface temperature, urban heat island effect and land use type, so as to provide theoretical basis and scientific basis for mitigating climate change. The results showed that: (1) The heat island effect was obvious in Kunming City, the high temperature area increased from 604 km2 in 2000 to 1269 km2 in 2020, and the sub-high temperature area reached 1099 km2 in 2020; (2) In terms of space, the spatial distribution of LST was significantly different with the change of underlying surface. The high temperature zone extended in three directions: south, north and east. The overall spatial distribution pattern of LST was high in the east and low in the west. (3) The inter-annual fluctuation of land surface temperature (LST) was large, and the growth rate was faster, from 2000 to 2010. The lowest temperature in 2000 was 13.45 ℃, which raised to 19.71 ℃ in 2010, and the temperature difference in 10 years was 6.26 ℃. (4) The land use/land cover type has a strong effect on the change of LST: the man-made land made a great contribution to the increase of LST, followed by grassland and farmland, while forest and water have a significant cooling effect on LST. To sum up, the variation of surface temperature in Kunming is the result of the interactions of human activities and climate change.

Keywords: Surface temperature, urban heat island effect, land use cover type, spatiotemporal variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89
2804 Simulating Climate Change (Temperature and Soil Moisture) in a Mixed-Deciduous Forest, Ontario, Canada

Authors: David Goldblum, Lesley S. Rigg

Abstract:

To simulate expected climate change, we implemented a two-factor (temperature and soil moisture) field design in a forest in Ontario, Canada. To manipulate moisture input, we erected rain-exclusion structures. Under each structure, plots were watered with one of three treatments and thermally controlled with three heat treatments to simulate changes in air temperature and rainfall based on the climate model (GCM) predictions for the study area. Environmental conditions (including untreated controls) were monitored tracking air temperature, soil temperature, soil moisture, and photosynthetically active radiation. We measured rainfall and relative humidity at the site outside the rain-exclusion structures. Analyses of environmental conditions demonstrates that the temperature manipulation was most effective at maintaining target temperature during the early part of the growing season, but it was more difficult to keep the warmest treatment at 5º C above ambient by late summer. Target moisture regimes were generally achieved however incoming solar radiation was slightly attenuated by the structures.

Keywords: Acer saccharum, climate change, forest, environmental manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
2803 HPL-TE Method for Determination of Coatings Relative Total Emissivity Sensitivity Analysis of the Influences of Method Parameters

Authors: Z. Veselý, M. Honner

Abstract:

High power laser – total emissivity method (HPL-TE method) for determination of coatings relative total emissivity dependent on the temperature is introduced. Method principle, experimental and evaluation parts of the method are described. Computer model of HPL-TE method is employed to perform the sensitivity analysis of the effect of method parameters on the sample surface temperature in the positions where the surface temperature and radiation heat flux are measured.

Keywords: High temperature laser testing, measurement ofthermal properties, emissivity, coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
2802 Predictions of Values in a Causticizing Process

Authors: R. Andreola, O. A. A. Santos, L. M. M, Jorge

Abstract:

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papéis, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.

Keywords: Causticizing, lime, prediction, process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
2801 Alternating Current Photovoltaic Module Model

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents modeling of an Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: AC PV Module, Datasheet, Matlab/Simulink, PV modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2870
2800 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Keywords: artificial neural networks, aquaculture, forced circulation hot water system,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
2799 The Influence of RHA on the Mechanical Properties of Mortar Heated Up To High Temperature

Authors: Md. Harunur Rashid, S. M. Kamal Uddin, Sobura khatun

Abstract:

The performance of mortar subjected to high temperature and cooled in normal ambient temperature was examined in the laboratory to comply with the situation of burning & cooling of a structure. Four series of cubical (5 X 5 X 5 cm) mortar specimens were made from OPC, and partial replacement (10, 15, 20, 25 & 30%) of OPC by Rice Husk Ash (RHA) produced in the uncontrolled environment. These specimens were heated in electric furnace to 200, 300, 400, 500 and 7000C. The specimens were kept in normal room temperature for cooling. They were then tested for mechanical properties and the results shows that particular 20% RHA mixed mortar shows better fire performance.

Keywords: Fire performance, Rice Husk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2798 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: Liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
2797 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: Reactor, modeling, methanol, steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
2796 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Authors: Man Young Kim

Abstract:

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
2795 Thermal Analysis of a Sliding Electric Contact System Using Finite Element Method

Authors: Adrian T. Pleșca

Abstract:

In this paper a three dimensional thermal model of a sliding contact system is proposed for both steady-state or transient conditions. The influence of contact force, electric current and ambient temperature on the temperature distribution, has been investigated. A thermal analysis of the different type of the graphite material of fixed electric contact and its influence on contact system temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Sliding electric contact, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
2794 Holografic Interferometry used for Measurement of Temperature Field in Fluid

Authors: Vít Lédl, Tomáš Vít, Pavel Psota, Roman Doleček

Abstract:

The presented paper shows the possibility of using holographic interferometry for measurement of temperature field in moving fluids. There are a few methods for identification of velocity fields in fluids, such us LDA, PIV, hot wire anemometry. It is very difficult to measure the temperature field in moving fluids. One of the often used methods is Constant Current Anemometry (CCA), which is a point temperature measurement method. Data are possibly acquired at frequencies up to 1000Hz. This frequency should be limiting factor for using of CCA in fluid when fast change of temperature occurs. This shortcoming of CCA measurements should be overcome by using of optical methods such as holographic interferometry. It is necessary to employ a special holographic setup with double sensitivity instead of the commonly used Mach-Zehnder type of holographic interferometer in order to attain the parameters sufficient for the studied case. This setup is not light efficient like the Mach-Zehnder type but has double sensitivity. The special technique of acquiring and phase averaging of results from holographic interferometry is also presented. The results from the holographic interferometry experiments will be compared with the temperature field achieved by methods CCA method.

Keywords: Holographic interferometry, pulsatile flow, temperature measurement, hot-wire anemometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
2793 The Sublimation Energy of Metal versus Temperature and Pressure and its Influence on Blow-off Impulse

Authors: Wenhui Tang, Daorong Wang, Xia Huang, Xianwen Ran

Abstract:

Based on the thermodynamic theory, the dependence of sublimation energy of metal on temperature and pressure is discussed, and the results indicate that the sublimation energy decreases linearly with the increase of temperature and pressure. Combined with this result, the blow-off impulse of aluminum induced by pulsed X-ray is simulated by smoothed particle hydrodynamics (SPH) method. The numerical results show that, while the change of sublimation energy with temperature and pressure is considered, the blow-off impulse of aluminum is larger than the case that the sublimation energy is assumed to be a constant.

Keywords: sublimation energy, blow-off impulse, pulsed X-ray, SPH method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
2792 Generalized Predictive Control of Batch Polymerization Reactor

Authors: R. Khaniki, M.B. Menhaj, H. Eliasi

Abstract:

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2791 Generalized Predictive Control of Batch Polymerization Reactor

Authors: R. Khaniki, M.B. Menhaj, H. Eliasi

Abstract:

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
2790 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus

Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani

Abstract:

Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.

Keywords: Natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
2789 Comparison of Different Gas Turbine Inlet Air Cooling Methods

Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli

Abstract:

Gas turbine air inlet cooling is a useful method for increasing output for regions where significant power demand and highest electricity prices occur during the warm months. Inlet air cooling increases the power output by taking advantage of the gas turbine-s feature of higher mass flow rate when the compressor inlet temperature decreases. Different methods are available for reducing gas turbine inlet temperature. There are two basic systems currently available for inlet cooling. The first and most cost-effective system is evaporative cooling. Evaporative coolers make use of the evaporation of water to reduce the gas turbine-s inlet air temperature. The second system employs various ways to chill the inlet air. In this method, the cooling medium flows through a heat exchanger located in the inlet duct to remove heat from the inlet air. However, the evaporative cooling is limited by wet-bulb temperature while the chilling can cool the inlet air to temperatures that are lower than the wet bulb temperature. In the present work, a thermodynamic model of a gas turbine is built to calculate heat rate, power output and thermal efficiency at different inlet air temperature conditions. Computational results are compared with ISO conditions herein called "base-case". Therefore, the two cooling methods are implemented and solved for different inlet conditions (inlet temperature and relative humidity). Evaporative cooler and absorption chiller systems results show that when the ambient temperature is extremely high with low relative humidity (requiring a large temperature reduction) the chiller is the more suitable cooling solution. The net increment in the power output as a function of the temperature decrease for each cooling method is also obtained.

Keywords: Absorption chiller, evaporative cooling, gas turbine, turbine inlet cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7502
2788 Optimization of Thermal and Discretization Parameters in Laser Welding Simulation Nd:YAG Applied for Shin Plate Transparent Mode Of DP600

Authors: Chansopheak Seang, Afia David Kouadri, Eric Ragneau

Abstract:

Three dimensional analysis of thermal model in laser full penetration welding, Nd:YAG, by transparent mode DP600 alloy steel 1.25mm of thickness and gap of 0.1mm. Three models studied the influence of thermal dependent temperature properties, thermal independent temperature and the effect of peak value of specific heat at phase transformation temperature, AC1, on the transient temperature. Another seven models studied the influence of discretization, meshes on the temperature distribution in weld plate. It is shown that for the effects of thermal properties, the errors less 4% of maximum temperature in FZ and HAZ have identified. The minimum value of discretization are at least one third increment per radius for temporal discretization and the spatial discretization requires two elements per radius and four elements through thickness of the assembled plate, which therefore represent the minimum requirements of modeling for the laser welding in order to get minimum errors less than 5% compared to the fine mesh.

Keywords: FEA, welding, discretization, ABAQUS user subroutine DFLUX

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
2787 Analyzing the Performance of Phase Change Material Insulation Layer on Food Packaging

Authors: Kasra Ghaemi, Syeda Tasnim, Shohel Mahmud

Abstract:

One of the main issues affecting the quality and shelf life of food products is temperature fluctuation during transportation and storage. Packaging plays an important role in protecting food from environmental conditions, especially thermal variations. In this study, the performance of using microencapsulated Phase Change Material (PCM) as a promising thermal buffer layer in smart food packaging is investigated. The considered insulation layer is evaluated for different thicknesses and the absorbed heat from the environment. The results are presented in terms of the melting time of PCM or provided thermal protection period.

Keywords: Food packaging, phase change material, thermal buffer, protection time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370