Search results for: temperature dependent dielectric constant.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3929

Search results for: temperature dependent dielectric constant.

3689 Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas

Authors: Kun Lei, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang

Abstract:

This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.

Keywords: Thermal distribution, heat transfer, axial-flow, fixed bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437
3688 Constructive Proof of the Existence of an Equilibrium in a Competitive Economy with Sequentially Locally Non-Constant Excess Demand Functions

Authors: Yasuhito Tanaka

Abstract:

In this paper we will constructively prove the existence of an equilibrium in a competitive economy with sequentially locally non-constant excess demand functions. And we will show that the existence of such an equilibrium in a competitive economy implies Sperner-s lemma. We follow the Bishop style constructive mathematics.

Keywords: Sequentially locally non-constant excess demand functions, Equilibrium in a competitive economy, Constructive mathematics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
3687 Experimental Parametric Investigation of Temperature Effects on 60W-QCW Diode Laser

Authors: E. Farsad, S. P. Abbasi, A. Goodarzi, M. S. Zabihi

Abstract:

Nowadays, quasi-continuous wave diode lasers are used in a widespread variety of applications. Temperature effects in these lasers can strongly influence their performance. In this paper, the effects of temperature have been experimentally investigated on different features of a 60W-QCW diode laser. The obtained results indicate that the conversion efficiency and operation voltage of diode laser decrease with the augmentation of the working temperature associated with a redshift in the laser peak wavelength. Experimental results show the emission peak wavelength of laser shifts 0.26 nm and the conversion efficiency decreases 1.76 % with the increase of temperature from 40 to 50 ̊C. Present study also shows the slope efficiency decreases gradually at low temperatures and rapidly at higher temperatures. Regarding the close dependence of the mentioned parameters to the operating temperature, it is of great importance to carefully control the working temperature of diode laser, particularly for medical applications.

Keywords: diode laser, experimentally, temperature, wavelength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360
3686 Group Similarity Transformation of a Time Dependent Chemical Convective Process

Authors: M. M. Kassem, A. S. Rashed

Abstract:

The time dependent progress of a chemical reaction over a flat horizontal plate is here considered. The problem is solved through the group similarity transformation method which reduces the number of independent by one and leads to a set of nonlinear ordinary differential equation. The problem shows a singularity at the chemical reaction order n=1 and is analytically solved through the perturbation method. The behavior of the process is then numerically investigated for n≠1 and different Schmidt numbers. Graphical results for the velocity and concentration of chemicals based on the analytical and numerical solutions are presented and discussed.

Keywords: Time dependent, chemical convection, grouptransformation method, perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
3685 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: Entropy generation, heat transfer, nanofluid, natural convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
3684 Temperature Field Study of Brake Disc in a Belt Conveyor Brake

Authors: Hou Youfu, Wang Daoming, Meng Qingrui

Abstract:

To reveal the temperature field distribution of disc brake in downward belt conveyor, mathematical models of heat transfer for disc brake were established combined with heat transfer theory. Then, the simulation process was stated in detail and the temperature field of disc brake under conditions of dynamic speed and dynamic braking torque was numerically simulated by using ANSYS software. Finally the distribution and variation laws of temperature field in the braking process were analyzed. Results indicate that the maximum surface temperature occurs at a time before the brake end and there exist large temperature gradients in both radial and axial directions, while it is relatively small in the circumferential direction.

Keywords: Downward belt conveyor, Disc brake, Temperature field, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
3683 Design and Fabrication of a Miniaturized Microstrip Antenna Loaded by DNG Metamaterial

Authors: A. Ghaznavi Jahromi, F. Mohajeri

Abstract:

In this paper the design, fabrication, and testing of a miniaturized rectangular microstrip patch antenna loaded with DNG metamaterials is reported. The metamaterial is composed of two nested spiral strips and a single straight strip which are etched on two sides of a 5.7 mm×5.7 mm Rogers RT/duroid 5880 with 0.5 mm thickness and dielectric constant of 2.2. Two units of this structure as a double negative (DNG) medium in combination with air as a double positive (DPS) medium are used as substrate of the microstrip patch antenna. By placing these metamaterial structures under the patch, a sub-wavelength resonance occurs which leads to a smaller size patch antenna compared to the conventional antenna at that frequency. The total size of the proposed antenna is reduced 54.6%. The dimensions of the proposed patch antenna are significantly smaller than the wavelength of the operation frequency with respect to the conventional patch antenna. Simulation result and test result for the proposed patch antenna are given and compared.

Keywords: Antennas, Metamaterials, Microstrip Antennas, Miniaturization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
3682 Design of Compact Dual-Band Planar Antenna for WLAN Systems

Authors: Anil Kumar Pandey

Abstract:

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Keywords: CPW fed antenna, dual-band, electromagnetic simulation, wireless local area network, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
3681 New EEM/BEM Hybrid Method for Electric Field Calculation in Cable Joints

Authors: Nebojsa B. Raicevic, Slavoljub R. Aleksic, Sasa S. Ilic

Abstract:

A power cable is widely used for power supply in power distributing networks and power transmission lines. Due to limitations in the production, delivery and setting up power cables, they are produced and delivered in several separate lengths. Cable itself, consists of two cable terminations and arbitrary number of cable joints, depending on the cable route length. Electrical stress control is needed to prevent a dielectric breakdown at the end of the insulation shield in both the air and cable insulation. Reliability of cable joint depends on its materials, design, installation and operating environment. The paper describes design and performance results for new modeled cable joints. Design concepts, based on numerical calculations, must be correct. An Equivalent Electrodes Method/Boundary Elements Method-hybrid approach that allows electromagnetic field calculations in multilayer dielectric media, including inhomogeneous regions, is presented.

Keywords: Cable joints, deflector's cones, equivalent electrodemethod, electric field distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
3680 Determination of the Zinc Oxide and Boric Acid Optimum Molar Ratio on the Ultrasonic Synthesis of Zinc Borates

Authors: A. Ersan, A. S. Kipcak, M. Yildirim, A. M. Erayvaz, E. M. Derun, N. Tugrul, S. Piskin

Abstract:

Zinc borates are used as a multi-functional flame retardant additive for its high dehydration temperature. In this study, the method of ultrasonic mixing was used in the synthesis of zinc borates. The reactants of zinc oxide (ZnO) and boric acid (H3BO3) were used at the constant reaction parameters of 90°C reaction temperature and 55 min of reaction time. Several molar ratios of ZnO:H3BO3 (1:1, 1:2, 1:3, 1:4 and 1:5) were conducted for the determination of the optimum reaction ratio. Prior to synthesis the characterization of the synthesized zinc borates were made by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). From the results Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized optimum at the molar ratio of 1:3, with a reaction efficiency of 95.2%.

Keywords: Zinc borates, ultrasonic mixing, XRD, FT-IR, reaction efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
3679 Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying

Authors: M. Jalali Azizpour, D. Sajedipour, H. Mohammadi Majd, M.R. Tahmasbi Birgani, M.Rabiae

Abstract:

An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.

Keywords: FEM, HVOF, Interfacial Temperature, Splat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
3678 Deformation Mechanisms at Elevated Temperatures: Influence of Momenta and Energy in the Single Impact Test

Authors: Harald Rojacz, Markus Varga, Horst Winkelmann

Abstract:

Within this work High Temperature Single Impact Studies were performed to evaluate deformation mechanisms at different energy and momentum levels. To show the influence of different microstructures and hardness levels and their response to single impacts four different materials were tested at various temperatures up to 700°C. One carbide reinforced NiCrBSi based Metal Matrix Composite and three different steels were tested. The aim of this work is to determine critical energies for fracture appearance and the materials response at different energy and momenta levels. Critical impact loadings were examined at elevated temperatures to limit operating conditions in impact dominated regimes at elevated temperatures. The investigations on the mechanisms were performed using different means of microscopy at the surface and in metallographic cross sections. Results indicate temperature dependence of the occurrence of cracks in hardphase rich materials, such as Metal Matrix Composites High Speed Steels and the influence of different impact momenta at constant energies on the deformation of different steels.

Keywords: Deformation, High Temperature, Metal Matrix Composite, Single Impact Test, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
3677 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: Coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
3676 Effect of Nanofluids on the Saturated Pool Film Boiling

Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Kemal Comakli

Abstract:

In this study, the effect of nanofluids on the pool film boiling was experimentally investigated at saturated condition under atmospheric pressure. For this purpose, four different water-based nanofluids (Al2O3, SiO2, TiO2 and CuO) with 0.1% particle volume fraction were prepared. To investigate the boiling heat transfer, a cylindrical rod with high temperature was used. The rod heated up to high temperatures was immersed into nanofluids. The center temperature of rod during the cooling process was recorded by using a K-type thermocouple. The quenching curves showed that the pool boiling heat transfer was strongly dependent on the nanoparticle materials. During the repetitive quenching tests, the cooling time decreased and thus, the film boiling vanished. Consequently, the primary reason of this was the change of the surface characteristics due to the nanoparticles deposition on the rod-s surface.

Keywords: Heat transfer, nanofluid, nanoparticles, pool film boiling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
3675 An Experimental Study on the Effect of EGR and Engine Speed on CO and HC Emissions of Dual Fuel HCCI Engine

Authors: M. Ghazikhani, M. R. Kalateh, Y. K. Toroghi, M. Dehnavi

Abstract:

In this study, effects of EGR on CO and HC emissions of a dual fuel HCCI-DI engine are investigated. Tests were conducted on a single-cylinder variable compression ratio (VCR) diesel engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature was 110-115ºC due to better formation of a homogeneous mixture causing HCCI combustion. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge in HCCI combustion. Experiments indicated 35 BTDC as the optimum injection timing. Coolant temperature was maintained 50ºC during the tests. Results show that increasing engine speed at a constant EGR rate leads to increase in CO and UHC emissions due to the incomplete combustion caused by shorter combustion duration and less homogeneous mixture. Results also show that increasing EGR reduces the amount of oxygen and leads to incomplete combustion and therefore increases CO emission due to lower combustion temperature. HC emission also increases as a result of lower combustion temperatures.

Keywords: Dual fuel HCCI engine, EGR, engine speed, CO andUHC emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
3674 An Experimental Study on the Effect of Premixed and Equivalence Ratios on CO and HC Emissions of Dual Fuel HCCI Engine

Authors: M. Ghazikhani, M. R. Kalateh, Y. K. Toroghi, M. Dehnavi

Abstract:

In this study, effects of premixed and equivalence ratios on CO and HC emissions of a dual fuel HCCI engine are investigated. Tests were conducted on a single-cylinder engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature results in better HCCI combustion due to formation of a homogeneous mixture, therefore, all tests were carried out over the optimum intake temperature of 110-115 ºC. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge and plays an important role in HCCI combustion phasing. Experiments indicated 35 BTDC as the optimum injection timing. Varying the coolant temperature in a range of 40 to 70 ºC, better HCCI combustion was achieved at 50 ºC. Therefore, coolant temperature was maintained 50 ºC during all tests. Simultaneous investigation of effective parameters on HCCI combustion was conducted to determine optimum parameters resulting in fast transition to HCCI combustion. One of the advantages of the method studied in this study is feasibility of easy and fast transition of typical diesel engine to a dual fuel HCCI engine. Results show that increasing premixed ratio, while keeping EGR rate constant, increases unburned hydrocarbon (UHC) emissions due to quenching phenomena and trapping of premixed fuel in crevices, but CO emission decreases due to increase in CO to CO2 reactions.

Keywords: Dual fuel HCCI engine, premixed ratio, equivalenceratio, CO and UHC emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
3673 Composition Dependent Formation of Sputtered Co-Cu Film on Cr Under-Layer

Authors: Watcharee Rattanasakulthong, Pichai Sirisangsawang, Supree Pinitsoontorn

Abstract:

Sputtered CoxCu100-x films with the different compositions of x = 57.7, 45.8, 25.5, 13.8, 8.8, 7.5 and 1.8 were deposited on Cr under-layer by RF-sputtering. SEM result reveals that the averaged thickness of Co-Cu film and Cr under-layer are 92 nm and 22nm, respectively. All Co-Cu films are composed of Co (FCC) and Cu (FCC) phases in (111) directions on BCC-Cr (110) under-layers. Magnetic properties, surface roughness and morphology of Co-Cu films are dependent on the film composition. The maximum and minimum surface roughness of 3.24 and 1.16nm are observed on the Co7.5Cu92.5 and Co45.8Cu54.2films, respectively. It can be described that the variance of surface roughness of the film because of the difference of the agglomeration rate of Co and Cu atoms on Cr under-layer. The Co57.5Cu42.3, Co45.8Cu54.2 and Co25.5Cu74.5 films shows the ferromagnetic phase whereas the rest of the film exhibits the paramagnetic phase at room temperature. The saturation magnetization, remnant magnetization and coercive field of Co-Cu films on Cr under-layer are slightly increased with increasing the Co composition. It can be concluded that the required magnetic properties and surface roughness of the Co-Cu film can be adapted by the adjustment of the film composition.

Keywords: Co-Cu films, Under-layers, Sputtering, Surface roughness, Magnetic properties, Atomic force microscopy (AFM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
3672 A Constitutive Model for Time-Dependent Behavior of Clay

Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili

Abstract:

A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.

Keywords: Bounding surface, consistency theory, constitutive model, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
3671 3D Modeling of Temperature by Finite Element in Machining with Experimental Authorization

Authors: P. Mottaghizadeh, M. Bagheri

Abstract:

In the present paper, the three-dimensional temperature field of tool is determined during the machining and compared with experimental work on C45 workpiece using carbide cutting tool inserts. During the metal cutting operations, high temperature is generated in the tool cutting edge which influence on the rate of tool wear. Temperature is most important characteristic of machining processes; since many parameters such as cutting speed, surface quality and cutting forces depend on the temperature and high temperatures can cause high mechanical stresses which lead to early tool wear and reduce tool life. Therefore, considerable attention is paid to determine tool temperatures. The experiments are carried out for dry and orthogonal machining condition. The results show that the increase of tool temperature depends on depth of cut and especially cutting speed in high range of cutting conditions.

Keywords: Finite element method, Machining, Temperature measurement, Thermal fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
3670 Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure

Authors: A. Arya, R. Laha, V. R. Dantham

Abstract:

We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals.

Keywords: Localized surface plasmons, photonic nanojet, SERS, whispering gallery mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
3669 Improvement Approach on Rotor Time Constant Adaptation with Optimum Flux in IFOC for Induction Machines Drives

Authors: S. Grouni, R. Ibtiouen, M. Kidouche, O. Touhami

Abstract:

Induction machine models used for steady-state and transient analysis require machine parameters that are usually considered design parameters or data. The knowledge of induction machine parameters is very important for Indirect Field Oriented Control (IFOC). A mismatched set of parameters will degrade the response of speed and torque control. This paper presents an improvement approach on rotor time constant adaptation in IFOC for Induction Machines (IM). Our approach tends to improve the estimation accuracy of the fundamental model for flux estimation. Based on the reduced order of the IM model, the rotor fluxes and rotor time constant are estimated using only the stator currents and voltages. This reduced order model offers many advantages for real time identification parameters of the IM.

Keywords: Indirect Field Oriented Control (IFOC), InductionMachine (IM), Rotor Time Constant, Parameters ApproachAdaptation. Optimum rotor flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
3668 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
3667 A High Precision Temperature Insensitive Current and Voltage Reference Generator

Authors: Kimberly Jane S. Uy, Patricia Angela Reyes-Abu, Wen Yaw Chung

Abstract:

A high precision temperature insensitive current and voltage reference generator is presented. It is specifically developed for temperature compensated oscillator. The circuit, designed using MXIC 0.5um CMOS technology, has an operating voltage that ranges from 2.6V to 5V and generates a voltage of 1.21V and a current of 6.38 ӴA. It exhibits a variation of ±0.3nA for the current reference and a stable output for voltage reference as the temperature is varied from 0°C to 70°C. The power supply rejection ratio obtained without any filtering capacitor at 100Hz and 10MHz is -30dB and -12dB respectively.

Keywords: Current reference, voltage reference, threshold voltage, temperature compensation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
3666 Two-Photon Ionization of Silver Clusters

Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian

Abstract:

In this paper, we calculate the two-photon ionization (TPI) cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is assumed to be close to the surface plasmon (SP) energy of cluster in dielectric media. Due to this choice, the pump wave excites collective oscillations of electrons-SP and the probe wave causes ionization of the cluster. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The advantage of Ag clusters as compared to the other noble metals is that the SP resonance in silver cluster is much sharper because of peculiarities of its dielectric function. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows taking into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.

Keywords: Resonance enhancement, silver clusters, surface plasmon, two-photon ionization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
3665 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times

Authors: M. Duran Toksarı, B. Uçarkuş

Abstract:

In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150- jobs problems. The proposed algorithms can find the same results in shorter time.

Keywords: Delivery times, learning effect, makespan, scheduling, total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
3664 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
3663 Temperature-Dependence of Hardness and Wear Resistance of Stellite Alloys

Authors: S. Kapoor, R. Liu, X. J. Wu, M. X. Yao

Abstract:

A group of Stellite alloys are studied in consideration of temperature effects on their hardness and wear resistance. The hardness test is conducted on a micro-hardness tester with a hot stage equipped that allows heating the specimen up to 650°C. The wear resistance of each alloy is evaluated using a pin-on-disc tribometer with a heating furnace built-in that provides the temperature capacity up to 450°C. The experimental results demonstrate that the hardness and wear resistance of Stellite alloys behave differently at room temperature and at high temperatures. The wear resistance of Stellite alloys at room temperature mainly depends on their carbon content and also influenced by the tungsten content in the alloys. However, at high temperatures the wear mechanisms of Stellite alloys become more complex, involving multiple factors. The relationships between chemical composition, microstructure, hardness and wear resistance of these alloys are studied, with focus on temperature effect on these relations.

Keywords: Stellite alloy, temperature, hardness, wear resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6388
3662 About the Instability Modes of Current Sheet in Wide Range of Frequencies

Authors: V. V. Lyahov, V. M. Neshchadim

Abstract:

We offer a new technique for research of stability of current sheaths in space plasma taking into account the effect of polarization. At the beginning, the found perturbation of the distribution function is used for calculation of the dielectric permeability tensor, which simulates inhomogeneous medium of a current sheath. Further, we in the usual manner solve the system of Maxwell's equations closed with the material equation. The amplitudes of Fourier perturbations are considered to be exponentially decaying through the current sheath thickness. The dispersion equation follows from the nontrivial solution requirement for perturbations of the electromagnetic field. The resulting dispersion equation allows one to study the temporal and spatial characteristics of instability modes of the current sheath (within the limits of the proposed model) over a wide frequency range, including low frequencies.

Keywords: Current sheath, distribution function, effect of polarization, instability modes, low frequencies, perturbation of electromagnetic field dispersion equation, space plasma, tensor of dielectric permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
3661 Design of a Constant Chord Single-Rotating Propeller using Lock and Goldstein Techniques

Authors: Samrand Rashahmadi, Morteza Abbaszadeh, Sana Hoseyni, Raziyeh Alizadeh

Abstract:

Design of a constant chord propeller is presented in this paper in order to reduce propeller-s design procedure-s costs. The design process was based on Lock and Goldstein-s techniques of propeller design and analysis. In order to calculate optimum chord of propeller, chord of a referential element is generalized as whole blades chord. The design outcome which named CS-X-1 is modeled & analyzed by CFD methods using K-ε: R.N.G turbulence model. Convergence of results of two codes proved that outcome results of design process are reliable. Design result is a two-blade propeller with a total diameter of 1.1 meter, radial velocity of 3000 R.P.M, efficiency above .75 and power coefficient near 1.05.

Keywords: Single rotating propeller, Design, C.F.D. test, constant chord

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
3660 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200oC. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200oC. Tensile strength of cast 310S stainless steel was 9 MPa at 1200oC, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900oC. Elongation also increased with temperature decreased. Microstructure observation revealed that s phase was precipitated along the grain boundary and within the matrix over 1200oC, which is detrimental to high temperature elongation.

Keywords: Stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211