Search results for: stabilization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 154

Search results for: stabilization.

124 Porous Effect on Heat Transfer of Non Uniform Velocity Inlet Flow Using LBM

Authors: A. Hasanpour, M. Farhadi, K.Sedighi, H.R.Ashorynejad

Abstract:

A numerical study of flow in a horizontally channel partially filled with a porous screen with non-uniform inlet has been performed by lattice Boltzmann method (LBM). The flow in porous layer has been simulated by the Brinkman-Forchheimer model. Numerical solutions have been obtained for variable porosity models and the effects of Darcy number and porosity have been studied in detail. It is found that the flow stabilization is reliant on the Darcy number. Also the results show that the stabilization of flow field and heat transfer is depended to Darcy number. Distribution of stream field becomes more stable by decreasing Darcy number. Results illustrate that the effect of variable porosity is significant just in the region of the solid boundary. In addition, difference between constant and variable porosity models is decreased by decreasing the Darcy number.

Keywords: Lattice Boltzmann Method, Porous Media, Variable Porosity, Flow Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
123 Attitude Stabilization of Satellites Using Random Dither Quantization

Authors: Attitude Stabilization of Satellites Using Random Dither Quantization

Abstract:

Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators.

Keywords: Quantized control, nonlinear systems, random dither quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
122 Stabilization of γ-Sterilized Food-Packaging Materials by Synergistic Mixtures of Food-Contact Approval Stabilizers

Authors: Sameh A. S. Alariqi

Abstract:

Food is widely packaged with plastic materials to prevent microbial contamination and spoilage. Ionizing radiation is widely used to sterilize the food-packaging materials. Sterilization by γ-radiation causes degradation such as embrittlement, stiffening, softening, discoloration, odour generation, and decrease in molecular weight. Many antioxidants can prevent γ-degradation but most of them are toxic. The migration of antioxidants to its environment gives rise to major concerns in case of food packaging plastics. In this attempt, we have aimed to utilize synergistic mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene-diene terpolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organophosphites (hydroperoxide decomposer). Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems where we mostly observed discoloration due to the oxidation of hindered phenol, the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization. However, the combination of organo-phosphite with secondary HAS, tertiary HAS and phenol antioxidants have been found to give synergistic even at higher doses of Gamma-irradiation. The effects have been explained through the interaction between the stabilizers. After γ-irradiation, the consumption of oligomeric stabilizer significantly depends on the components of stabilization mixture. The effect of the organo-phosphite antioxidant on the overall stability has been discussed.

Keywords: Ethylene-propylene-diene terpolymer, Synergistic mixtures, Gamma-sterilization and stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5781
121 Exponential Stability of Linear Systems under a Class of Unbounded Perturbations

Authors: Safae El Alaoui, Mohamed Ouzahra

Abstract:

In this work, we investigate the exponential stability of a linear system described by x˙ (t) = Ax(t) − ρBx(t). Here, A generates a semigroup S(t) on a Hilbert space, the operator B is supposed to be of Desch-Schappacher type, which makes the investigation more interesting in many applications. The case of Miyadera-Voigt perturbations is also considered. Sufficient conditions are formulated in terms of admissibility and observability inequalities and the approach is based on some energy estimates. Finally, the obtained results are applied to prove the uniform exponential stabilization of bilinear partial differential equations.

Keywords: Exponential stabilization, unbounded operator, Desch-Schappacher, Miyadera-Voigt operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270
120 Combined Model Predictive Controller Technique for Enhancing NAO Gait Stabilization

Authors: Brahim Brahmi, Mohammed Hamza Laraki, Mohammad Habibur Rahman, Islam M. Rasedul, M. Assad Uz-Zaman

Abstract:

The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.

Keywords: Preview control, walking, stabilization, humanoid robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528
119 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay

Authors: Ju H. Park, S.M. Lee

Abstract:

In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.

Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
118 Target Tracking by Flying Drone with Fixed Camera

Authors: Guilhem Baccialone, Nicolas Delaunay, Juan-Diego Gonzales, Céline Leclercq, Adrien Leroux, Santa Pallier

Abstract:

This paper presents the software conception of a quadrotor UAV, named SKYWATCHER, which is able to follow a target. This capacity can at a long turn time permit to follow another drone and combine their performance in order to military missions for example.

From a low-cost architecture constructed by five students we implemented a software and added a camera to create a visual servoing. This project demonstrates the possibility to associate the technology of stabilization and the technology of visual enslavement.

Keywords: Quadrotor, visual servoing, student project, image processing, Unmanned Aerial Vehicles, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
117 Feedback Stabilization Based on Observer and Guaranteed Cost Control for Lipschitz Nonlinear Systems

Authors: A. Thabet, G. B. H. Frej, M. Boutayeb

Abstract:

This paper presents a design of dynamic feedback control based on observer for a class of large scale Lipschitz nonlinear systems. The use of Differential Mean Value Theorem (DMVT) is to introduce a general condition on the nonlinear functions. To ensure asymptotic stability, sufficient conditions are expressed in terms of linear matrix inequalities (LMIs). High performances are shown through real time implementation with ARDUINO Duemilanove board to the one-link flexible joint robot.

Keywords: Feedback stabilization, DMVT, Lipschitz nonlinear systems, nonlinear observer, real time implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
116 New Stabilization for Switched Neutral Systems with Perturbations

Authors: Lianglin Xiong, Shouming Zhong, Mao Ye

Abstract:

This paper addresses the stabilization issues for a class of uncertain switched neutral systems with nonlinear perturbations. Based on new classes of piecewise Lyapunov functionals, the stability assumption on all the main operators or the convex combination of coefficient matrices is avoid, and a new switching rule is introduced to stabilize the neutral systems. The switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. Finally, three simulation examples are given to demonstrate the significant improvements over the existing results.

Keywords: Switched neutral system, piecewise Lyapunov functional, nonlinear perturbation, Lyapunov-Metzler linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
115 Feature Point Reduction for Video Stabilization

Authors: Theerawat Songyot, Tham Manjing, Bunyarit Uyyanonvara, Chanjira Sinthanayothin

Abstract:

Corner detection and optical flow are common techniques for feature-based video stabilization. However, these algorithms are computationally expensive and should be performed at a reasonable rate. This paper presents an algorithm for discarding irrelevant feature points and maintaining them for future use so as to improve the computational cost. The algorithm starts by initializing a maintained set. The feature points in the maintained set are examined against its accuracy for modeling. Corner detection is required only when the feature points are insufficiently accurate for future modeling. Then, optical flows are computed from the maintained feature points toward the consecutive frame. After that, a motion model is estimated based on the simplified affine motion model and least square method, with outliers belonging to moving objects presented. Studentized residuals are used to eliminate such outliers. The model estimation and elimination processes repeat until no more outliers are identified. Finally, the entire algorithm repeats along the video sequence with the points remaining from the previous iteration used as the maintained set. As a practical application, an efficient video stabilization can be achieved by exploiting the computed motion models. Our study shows that the number of times corner detection needs to perform is greatly reduced, thus significantly improving the computational cost. Moreover, optical flow vectors are computed for only the maintained feature points, not for outliers, thus also reducing the computational cost. In addition, the feature points after reduction can sufficiently be used for background objects tracking as demonstrated in the simple video stabilizer based on our proposed algorithm.

Keywords: background object tracking, feature point reduction, low cost tracking, video stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
114 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils

Authors: A. S. Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipments by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be said that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: Expansive soils, polypropylene fiber, stabilization, swelling percent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5658
113 Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay

Authors: Liqiong Liu, Shouming Zhong

Abstract:

In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.

Keywords: Finite-time stabilization, fractional-order system, Gronwall inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
112 Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection

Authors: Youngseok Kim, Chul Park, Jonghwa Yi, Sangsik Choi

Abstract:

The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure.

Keywords: Image stabilization, motion sensor, safety inspection, sonar image, underwater structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
111 Molecular Characteristics of Phosphoric Acid Treated Soils

Authors: Amin Eisazadeh, Khairul Anuar Kassim, Hadi Nur

Abstract:

The expansive nature of soils containing high amounts of clay minerals can be altered through chemical stabilization, resulting in a material suitable for construction purposes. The primary objective of this investigation was to study the changes induced in the molecular structure of phosphoric acid stabilized bentonite and lateritic soil using Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Based on the obtained data, it was found that a surface alteration mechanism was the main reason responsible for the improvement of treated soils. Furthermore, the results indicated that the Al present in the octahedral layer of clay minerals were more amenable to chemical attacks and also partly responsible for the formation of new products.

Keywords: Bentonite, Laterite clay, Molecularcharacterization, Phosphoric acid, Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
110 The Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa

Abstract:

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Keywords: Biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
109 The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria

Authors: Irina E. Sukovataya, Oleg S. Sutormin, Valentina A. Kratasyuk

Abstract:

Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.

Keywords: The coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase, glycerol, stabilization of enzymes, sucrose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
108 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis

Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon

Abstract:

The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.

Keywords: Bernoulli-Euler Plate Equation, Numerical Simulations, Stability, Energy Decay, Finite Difference Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
107 Bone Ash Impact on Soil Shear Strength

Authors: G. M. Ayininuola, A. O. Sogunro

Abstract:

Most failures of soil have been attributed to poor shear strength. Consequently, the present paper investigated the suitability of cattle bone ash as a possible additive to improve the shear strength of soils. Four soil samples were collected and stabilized with prepared bone ash in proportions of 3%, 5%, 7%, 10%, 15% and 20% by dry weight. Chemical analyses of the bone ash; followed by classification, compaction, and triaxial shear tests of the treated soil samples were conducted. Results obtained showed that bone ash contained high proportion of calcium oxide and phosphate. Addition of bone ash to soil samples led to increase in soil shear strengths within the range of 22.40% to 105.18% over the strengths of the respective control tests. Conversely, all samples attained maximum shear strengths at 7% bone ash stabilization. The use of bone ash as an additive will therefore improve the shear strength of soils; however, using bone ash quantities in excess of 7% may not yield ample results.

Keywords: Bone ash, Shear strength, Stabilization, Soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3492
106 Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations

Authors: Naveed Ahmed, Gunar Matthies

Abstract:

We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numerical results which shows that the cGP(k) and dG(k)- methods are accurate of order k +1, respectively, in the whole time interval. Moreover, the cGP(k)-method is superconvergent of order 2k and dG(k)-method is of order 2k +1 at the discrete time points. Furthermore, the dependence of the results on the choice of the stabilization parameter are discussed and compared.

Keywords: Convection-diffusion-reaction equations, stabilized finite elements, discontinuous Galerkin, continuous Galerkin-Petrov.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
105 The Characteristics of Transformation of Institutional Changes and Georgia

Authors: Nazira Kakulia

Abstract:

The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.

Keywords: Competitive, environment, fiscal policy, macro-economic stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
104 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades

Authors: Magdi M. E. Zumrawi, Nehla Mansour

Abstract:

This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.

Keywords: Geogrid, reinforcement, stabilization, subgrade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
103 Stabilization of Angular-Shaped Riprap under Overtopping Flows

Authors: Dilavar Khan, Z. Ahmad

Abstract:

Riprap is mostly used to prevent erosion by flows down the steep slopes in river engineering. A total of 53 stability tests performed on angular riprap with a median stone size ranging from 15 to 278 mm and slope ranging from 1 to 40% are used in this study. The existing equations for the prediction of medium size of angular stones are checked for their accuracy using the available data. Predictions of median size using these equations are not satisfactory and results show deviation by more than ±20% from the observed values. A multivariable power regression analysis is performed to propose a new equation relating the median size with unit discharge, bed slope, riprap thickness and coefficient of uniformity. The proposed relationship satisfactorily predicts the median angular stone size with ±20% error. Further, the required size of the rounded stone is more than the angular stone for the same unit discharge and the ratio increases with unit discharge and also with embankment slope of the riprap.

Keywords: Angularity, Gradation, Riprap, Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
102 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling

Authors: A. Puras Trueba, J. R. Llata García

Abstract:

A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.

Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
101 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation

Authors: Aziz Sezgin

Abstract:

We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.

Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
100 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: Optimal control, stochastic systems, quantum systems, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
99 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither

Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.

Keywords: Spacecraft control, quantized control, nonlinear control, random dither method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
98 Comparative Efficacy of Pomegranate Juice, Peel and Seed Extract in the Stabilization of Corn Oil under Accelerated Conditions

Authors: Zoi Konsoula

Abstract:

Antioxidant-rich extracts were prepared from pomegranate peels, seeds and juice using methanol and ethanol and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Both analytical methods indicated a higher antioxidant activity in extracts prepared from peels, which was comparable to that of butylated hydroxytoluene (BHT). Furthermore, the antioxidant activity was correlated to the phenolic and flavonoid content of the various extracts. The antioxidant effectiveness of the extracts was also assessed using corn oil as the oxidation substrate. More specifically, preheated corn oil samples stabilized with extracts at a concentration of 250 ppm, 500 ppm or 1,000 ppm were subjected to accelerated aging (100 oC, 10 days) and the extent of oxidative alteration was followed by the measurement of the peroxide, conjugated dienes and trienes, as well as p-aniside value. BHT at its legal limit (200 ppm) served as standard besides the control sample. Results from the different parameters were in agreement with each other suggesting that pomegranate extracts can stabilize corn oil effectively under accelerated conditions, at all concentrations tested. However, the magnitude of oil stabilization depended strongly on the amount of extract added and this was positively correlated with their phenolic content. Pomegranate peel extracts, which exhibited the highest not only phenolic and flavonoid content but also antioxidant activity, were more potent in inhibiting oxidative deterioration. Both methanolic and ethanolic peel extracts at a concentration of 500 ppm exerted a stabilizing effect comparable to that of BHT, while at a concentration of 1000 ppm they exhibited higher stabilization efficiency in comparison to BHT. Finally, heating oil samples resulted in a time dependent decrease in their antioxidant capacity. Samples containing peel extracts appeared to retain their antioxidant capacity for a longer period, indicating that these extracts contained active compounds that offered superior antioxidant protection to corn oil.

Keywords: Antioxidant activity, corn oil, oxidative deterioration, pomegranate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
97 Stabilization of Clay Soil Using A-3 Soil

Authors: Mohammed Mustapha Alhaji, Salawu Sadiku

Abstract:

A clay soil classified as A-7-6 and CH soil according to AASHTO and unified soil classification system respectively, was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20%, to 100% A-3 soil, compacted at both British Standard Light (BSL) and British Standard Heavy (BSH) compaction energy levels and using Unconfined Compressive Strength (UCS) as evaluation criteria. The Maximum Dry Density (MDD) of the treated soils at both the BSL and BSH compaction energy levels showed increase from 0% to 40% A-3 soil replacement after which the values reduced to 100% replacement. The trend of the Optimum Moisture Content (OMC) with varied A-3 soil replacement was similar to that of MDD but in a reversed order. The OMC reduced from 0% to 40% A-3 soil replacement after which the values increased to 100% replacement. This trend was attributed to the observed reduction in void ratio from 0% to 40% replacement after which the void ratio increased to 100% replacement. The maximum UCS for the soil at varied A-3 soil replacement increased from 272 and 770 kN/m2 for BSL and BSH compaction energy level at 0% replacement to 295 and 795 kN/m2 for BSL and BSH compaction energy level respectively at 10% replacement after which the values reduced to 22 and 60 kN/m2 for BSL and BSH compaction energy level respectively at 70% replacement. Beyond 70% replacement, the mixtures could not be moulded for UCS test.

Keywords: A-3 soil, clay soil, pozzolanic action, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
96 Laboratory Investigation of Expansive Soil Stabilized with Calcium Chloride

Authors: Magdi M. E. Zumrawi, Khalid A. Eltayeb

Abstract:

Chemical stabilization is a technique commonly used to improve the expansive soil properties. In this regard, an attempt has been made to evaluate the influence of Calcium Chloride (CaCl2) stabilizer on the engineering properties of expansive soil. A series of laboratory experiments including consistency limits, free swell, compaction, and shear strength tests were performed to investigate the effect of CaCl2 additive with various percentages 0%, 2%, 5%, 10% and 15% for improving expansive soil. The results obtained shows that the increase in the percentage of CaCl2decreased the liquid limit and plasticity index leading to significant reduction in the free swell index. This, in turn, increased the maximum dry density and decreased the optimum moisture content which results in greater strength. The unconfined compressive strength of soil stabilized with 5% CaCl2 increased approximately by 50% as compared to virgin soil. It can be concluded that CaCl2 had shown promising influence on the strength and swelling properties of expansive soil, thereby giving an advantage in improving problematic expansive soil.

Keywords: Calcium chloride, chemical stabilization, expansive soil, improving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947
95 Asymptotic Stabilization of an Active Magnetic Bearing System using LMI-based Sliding Mode Control

Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim

Abstract:

In this paper, stabilization of an Active Magnetic Bearing (AMB) system with varying rotor speed using Sliding Mode Control (SMC) technique is considered. The gyroscopic effect inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Also, transformation of the AMB dynamic model into a new class of uncertain system shows that this gyroscopic effect lies in the mismatched part of the system matrix. Moreover, the current gain parameter is allowed to be varied in a known bound as an uncertainty in the input matrix. SMC design method is proposed in which the sufficient condition that guarantees the global exponential stability of the reduced-order system is represented in Linear Matrix Inequality (LMI). Then, a new chattering-free control law is established such that the system states are driven to reach the switching surface and stay on it thereafter. The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

Keywords: Active Magnetic Bearing (AMB), Sliding ModeControl (SMC), Linear Matrix Inequality (LMI), mismatcheduncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478