Search results for: solar cell.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1172

Search results for: solar cell.

992 Data Acquisition from Cell Phone using Logical Approach

Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung, Jae-Cheol Ryou

Abstract:

Cell phone forensics to acquire and analyze data in the cellular phone is nowadays being used in a national investigation organization and a private company. In order to collect cellular phone flash memory data, we have two methods. Firstly, it is a logical method which acquires files and directories from the file system of the cell phone flash memory. Secondly, we can get all data from bit-by-bit copy of entire physical memory using a low level access method. In this paper, we describe a forensic tool to acquire cell phone flash memory data using a logical level approach. By our tool, we can get EFS file system and peek memory data with an arbitrary region from Korea CDMA cell phone.

Keywords: Forensics, logical method, acquisition, cell phone, flash memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4059
991 Solar Energy Potential and Applications in Myanmar

Authors: Thet Thet Han Yee, Su Su Win, Nyein Nyein Soe

Abstract:

Energy consumption is one of the indices in determining the levels of development of a nation. Therefore, availability of energy supply to all sectors of life in any country is crucial for its development. These exists shortage of all kinds of energy, particularly electricity which is badly needed for economic development. Electricity from the sun which is quite abundant in most of the developing countries is used in rural areas to meet basic electricity needs of a rural community. Today-s electricity supply in Myanmar is generated by fuel generators and hydroelectric power plants. However, far-flung areas which are away from National Grids cannot enjoy the electricity generated by these sources. Since Myanmar is a land of plentiful sunshine, especially in central and southern regions of the country, the first form of energy- solar energy could hopefully become the final solution to its energy supply problem. The direct conversion of solar energy into electricity using photovoltaic system has been receiving intensive installation not only in developed countries but also in developing countries. It is mainly intended to present solar energy potential and application in Myanmar. It is also wanted to get the benefits of using solar energy for people in remote areas which are not yet connected to the national grids because of the high price of fossil fuel.

Keywords: Electricity supply in Myanmar, National Grids, solarenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7822
990 A Novel Four-Transistor SRAM Cell with Low Dynamic Power Consumption

Authors: Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati

Abstract:

This paper presents a novel CMOS four-transistor SRAM cell for very high density and low power embedded SRAM applications as well as for stand-alone SRAM applications. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 20% smaller than a conventional six-transistor cell using same design rules. Also proposed cell uses two word-lines and one pair bit-line. Read operation perform from one side of cell, and write operation perform from another side of cell, and swing voltage reduced on word-lines thus dynamic power during read/write operation reduced. The fabrication process is fully compatible with high-performance CMOS logic technologies, because there is no need to integrate a poly-Si resistor or a TFT load. HSPICE simulation in standard 0.25μm CMOS technology confirms all results obtained from this paper.

Keywords: Positive feedback, leakage current, read operation, write operation, dynamic energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
989 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.

Keywords: climate change, projections, solar radiation, validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
988 Comparison of the DC/DC-Converters for Fuel Cell Applications

Authors: Oleksandr Krykunov

Abstract:

The source voltage of high-power fuel cell shows strong load dependence at comparatively low voltage levels. In order to provide the voltage of 750V on the DC-link for feeding electrical energy into the mains via a three phase inverter a step-up converter with a large step-up ratio is required. The output voltage of this DC/DC-converter must be stabile during variations of the load current and the voltage of the fuel cell. This paper presents the methods and results of the calculation of the efficiency and the expense for the realization for the circuits of the DC/DC-converter that meet these requirements.

Keywords: DC/DC-converter, calculation, efficiency, fuel cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
987 The Use of the Flat Field Panel for the On-Ground Calibration of Metis Coronagraph on Board of Solar Orbiter

Authors: C. Casini, V. Da Deppo, P. Zuppella, P. Chioetto, A. Slemer, F. Frassetto, M. Romoli, F. Landini, M. Pancrazzi, V. Andretta, E. Antonucci, A. Bemporad, M. Casti, Y. De Leo, M. Fabi, S. Fineschi, F. Frassati, C. Grimani, G. Jerse, P. Heinzel, K. Heerlein, A. Liberatore, E. Magli, G. Naletto, G. Nicolini, M.G. Pelizzo, P. Romano, C. Sasso, D. Spadaro, M. Stangalini, T. Straus, R. Susino, L. Teriaca, M. Uslenghi, A. Volpicelli

Abstract:

Solar Orbiter, launched on February 9th 2020, is an ESA/NASA mission conceived to study the Sun. The payload is composed of 10 instruments, among which there is the Metis coronagraph. A coronagraph aims at taking images of the solar corona: the occulter element simulates a total solar eclipse. This work presents some of the results obtained in the visible light band (580-640 nm) using a flat field panel source. The flat field panel gives a uniform illumination; consequently, it has been used during the on-ground calibration for several purposes: evaluating the response of each pixel of the detector (linearity); and characterizing the Field of View of the coronagraph. As a conclusion, a major result is the verification that the requirement for the Field of View (FoV) of Metis is fulfilled. Some investigations are in progress in order to verify that the performance measured on-ground did not change after launch.

Keywords: Space instrumentation, Metis, solar coronagraph, flat field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624
986 Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells

Authors: Nidal H. Abu-Zahra, Mahmoud Algazzar

Abstract:

In this research, n-dodecylthiol was added to P3HT/ PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT:PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. 

Keywords: n-dodecylthiol, Congugated PSC, P3HT/PCBM, Polymer Solar Cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3465
985 Operating Live E! Digital Meteorological Equipments Using Solar Photovoltaics

Authors: Eiko Takaoka, Ryohei Takahashi, Takashi Toyoda

Abstract:

We installed solar panels and digital meteorological equipments whose electrical power is supplied using PV on July 13, 2011. Then, the relationship between the electric power generation and the irradiation, air temperature, and wind velocity was investigated on a roof at a university. The electrical power generation, irradiation, air temperature, and wind velocity were monitored over two years. By analyzing the measured meteorological data and electric power generation data using PTC, we calculated the size of the solar panel that is most suitable for this system. We also calculated the wasted power generation using PTC with the measured meteorological data obtained in this study. In conclusion, to reduce the "wasted power generation", a smaller-size solar panel is required for stable operation.

Keywords: Digital meteorological equipments, PV, photovoltaic, irradiation, PTC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
984 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
983 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold

Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos

Abstract:

Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.

Keywords: Ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO2/In2O3 bilayer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
982 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace: Installations and Theoretical Base

Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian

Abstract:

The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.

Keywords: Metallurgical grade silicon, solar grade silicon, impurity, refining, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
981 Passive Ventilation System Analysis using Solar Chimney in South of Algeria

Authors: B. Belfuguais, S. Larbi

Abstract:

The work presented in this study is related to an energy system analysis based on passive cooling system for dwellings. It consists to solar chimney energy performances determination versus geometrical and environmental considerations as the size and inlet width conditions of the chimney. Adrar site located in the southern region of Algeria is chosen for this study according to ambient temperature and solar irradiance technical data availability. Obtained results are related to the glazing temperature distributions, the chimney air flow and internal wall temperatures. The air room change per hour (ACH) parameter, the outlet air velocity and mass air flow rate are also determined. It is shown that the chimney width has a significant effect on energy performances compared to its entry size. A good agreement is observed between these results and those obtained by others from the literature.

Keywords: Solar chimney, Energy performances, Passive ventilation, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
980 Contribution to the Study and Optimal Exploitation of a Solar Power System for a Semi-Arid Zone (Case Study: Ferkene, Algeria)

Authors: D. Dib, W. Guebabi, M. B. Guesmi

Abstract:

The objective of this paper is a contribution to a study of power supply by solar energy system called a common Ferkène north of Algerian desert in the semi-arid area. The optimal exploitation of the system, goes through stages of study and essential design, the choice of the model of the photovoltaic panel, the study of behavior with all the parameters involved in simulation before fixing the trajectory tracking the maximum point the power to extract (MPPT), form the essential platform to shape the design of the solar system set up to supply the town Ferkène without considering the grid. The identification of the common Ferkène by the collection of geographical, meteorological, demographic and electrical provides a basis uniform and important data. The results reflect a valid fictive model for any attempt to study and design a solar system to supply an arid or semi-arid zone by electrical energy from photovoltaic panels.

Keywords: Solar power, photovoltaic panel, Boost converter, supply, design, electric power, Ferkène, Algeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
979 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: Vacuum, thermal, flat-plate solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
978 Optical and Structural Properties of a ZnS Buffer Layer Fabricated with Deposition Temperature of RF Magnetron Sputtering System

Authors: Won Song, Bo-Ra Koo, Seok Eui Choi, Yong-Taeg Oh, Dong-Chan Shin

Abstract:

Optical properties of sputter-deposited ZnS thin films were investigated as potential replacements for CBD(chemical bath deposition) CdS buffer layers in the application of CIGS solar cells. ZnS thin films were fabricated on glass substrates at RT, 150oC, 200oC, and 250oC with 50 sccm Ar gas using an RF magnetron sputtering system. The crystal structure of the thin film is found to be zinc blende (cubic) structure. Lattice parameter of ZnS is slightly larger than CdS on the plane and thus better matched with that of CIGS. Within a 400-800 nm wavelength region, the average transmittance was larger than 75%. When the deposition temperature of the thin film was increased, the blue shift phenomenon was enhanced. Band gap energy of the ZnS thin film tended to increase as the deposition temperature increased. ZnS thin film is a promising material system for the CIGS buffer layer, in terms of ease of processing, low cost, environmental friendliness, higher transparency, and electrical properties

Keywords: ZnS thin film, Buffer layer, CIGS, Solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
977 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: Energy storage, power distribution system, solar generator, voltage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
976 Concentrated Solar Power Utilization in Space Vehicles Propulsion and Power Generation

Authors: Maged A. Mossallam

Abstract:

The objective from this paper is to design a solar thermal engine for space vehicles orbital control and electricity generation. A computational model is developed for the prediction of the solar thermal engine performance for different design parameters and conditions in order to enhance the engine efficiency. The engine is divided into two main subsystems. First, the concentrator dish which receives solar energy from the sun and reflects them to the cavity receiver. The second one is the cavity receiver which receives the heat flux reflected from the concentrator and transfers heat to the fluid passing over. Other subsystems depend on the application required from the engine. For thrust application, a nozzle is introduced to the system for the fluid to expand and produce thrust. Hydrogen is preferred as a working fluid in the thruster application. Results model developed is used to determine the thrust for a concentrator dish 4 meters in diameter (provides 10 kW of energy), focusing solar energy to a 10 cm aperture diameter cavity receiver. The cavity receiver outer length is 50 cm and the internal cavity is 47 cm in length. The suggested design material of the internal cavity is tungsten to withstand high temperature. The thermal model and analysis shows that the hydrogen temperature at the plenum reaches 2000oK after about 250 seconds for hot start operation for a flow rate of 0.1 g/sec.Using solar thermal engine as an electricity generation device on earth is also discussed. In this case a compressor and turbine are used to convert the heat gained by the working fluid (air) into mechanical power. This mechanical power can be converted into electrical power by using a generator.

Keywords: Concentrated Solar Energy, Orbital Control, Power Generation, Solar Thermal Engine, Space Vehicles Propulsion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
975 Immunomodulatory Effects of Multipotent Mesenchymal Stromal Cells on T-Cell Populations at Tissue-Related Oxygen Level

Authors: A. N. Gornostaeva, P. I. Bobyleva, E. R. Andreeva, L. B. Buravkova

Abstract:

Multipotent mesenchymal stromal cells (MSCs) possess immunomodulatory properties. The effect of MSCs on the crucial cellular immunity compartment – T-cells is of a special interest. It is known that MSC tissue niche and expected milieu of their interaction with T- cells are characterized by low oxygen concentration, whereas the in vitro experiments usually are carried out at a much higher ambient oxygen (20%). We firstly evaluated immunomodulatory effects of MSCs on T-cells at tissue-related oxygen (5%) after interaction implied cell-to-cell contacts and paracrine factors only. It turned out that MSCs under reduced oxygen can effectively suppress the activation and proliferation of PHAstimulated T-cells and can provoke decrease in the production of proinflammatory and increase in anti-inflammatory cytokines. In hypoxia some effects were amplified (inhibition of proliferation, antiinflammatory cytokine profile shift). This impact was more evident after direct cell-to-cell interaction; lack of intercellular contacts could revoke the potentiating effect of hypoxia.

Keywords: Cell-to-cell interaction, low oxygen, MSC immunosuppression, T-cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
974 Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations

Authors: Ljubomir Nikolic, Larisa Trichtchenko

Abstract:

The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operational large scale physics based models which can incorporate the most important physical processes and domains of the Sun-Earth system. In order to enhance our SW prediction capabilities we are developing advanced numerical tools. With operational requirements in mind, our goal is to develop a modular simulation framework of propagation of the disturbances from the Sun through interplanetary space to the Earth. Here, we report and discuss on the development of coronal field and solar wind components for a large scale MHD code. The model for these components is based on a potential field source surface model and an empirical Wang-Sheeley-Arge solar wind relation. 

Keywords: Space weather, numerical modeling, coronal field, solar wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
973 Design and Implementation of DC-DC Converter with Inc-Cond Algorithm

Authors: Mustafa Engin Basoğlu, Bekir Çakır

Abstract:

The most important component affecting the efficiency of photovoltaic power systems are solar panels. In other words, efficiency of these systems are significantly affected due to the being low efficiency of solar panel. Thus, solar panels should be operated under maximum power point conditions through a power converter. In this study, design of boost converter has been carried out with maximum power point tracking (MPPT) algorithm which is incremental conductance (Inc-Cond). By using this algorithm, importance of power converter in MPPT hardware design, impacts of MPPT operation have been shown. It is worth noting that initial operation point is the main criteria for determining the MPPT performance. In addition, it is shown that if value of load resistance is lower than critical value, failure operation is realized. For these analyzes, direct duty control is used for simplifying the control.

Keywords: Boost converter, Incremental Conductance (Inc- Cond), MPPT, Solar panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583
972 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: Climate, reanalysis, renewable energy, solar radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
971 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials

Authors: Ademola K. Aremu, Joseph. C. Igbeka

Abstract:

The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.

Keywords: Efficiency, energy, exergy, heating, insolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
970 Theoretical Review on Influencing Factors in the Design of Parabolic Trough Collector

Authors: S. N. Vijayan, S. Sendhil Kumar

Abstract:

Recent years have an upward trend in the research of renewable energy sector, due to the low availability of resources and huge consumption of conventional energies. Considerable renewable energy can be achieved from the available solar power with the utilization of collecting systems. Parabolic trough concentrating collector systems are mostly used to utilize maximum availability of solar power. This paper reviews the contributing factors for the overall performance of parabolic trough collectors. Its performance depends on the operating parameters such as the type of receiver and the collector material, medium of heat transfer, type of application and various climatic conditions.

Keywords: Solar radiation, parabolic trough collector, thermal analysis, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
969 Simulation and Realization of a Battery Charge Regulator

Authors: B. Nasri, M. Bensaada

Abstract:

We present a simulation and realization of a battery charge regulator (BCR) in microsatellite earth observation. The tests were performed on battery pack 12volt, capacity 24Ah and the solar array open circuit voltage of 100 volt and optimum power of about 250 watt. The battery charge is made by solar module. The principle is to adapt the output voltage of the solar module to the battery by using the technique of pulse width modulation (PWM). Among the different techniques of charge battery, we opted for the technique of the controller ON/OFF is a standard technique and simple, it-s easy to be board executed validation will be made by simulation "Proteus Isis Professional software ". The circuit and the program of this prototype are based on the PIC16F877 microcontroller, a serial interface connecting a PC is also realized, to view and save data and graphics in real time, for visualization of data and graphs we develop an interface tool “visual basic.net (VB)--.

Keywords: Battery Charge Regulator, Batteries, Buck converter, Power System, Power Conditioning, Power Distribution, Solar arrays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3168
968 Enhanced Interference Management Technique for Multi-Cell Multi-Antenna System

Authors: Simon E. Uguru, Victor E. Idigo, Obinna S. Oguejiofor, Naveed Nawaz

Abstract:

As the deployment of the Fifth Generation (5G) mobile communication networks take shape all over the world, achieving spectral efficiency, energy efficiency, and dealing with interference are among the greatest challenges encountered so far. The aim of this study is to mitigate inter-cell interference (ICI) in a multi-cell multi-antenna system while maximizing the spectral efficiency of the system. In this study, a system model was devised that showed a miniature representation of a multi-cell multi-antenna system. Based on this system model, a convex optimization problem was formulated to maximize the spectral efficiency of the system while mitigating the ICI. This optimization problem was solved using CVX, which is a modeling system for constructing and solving discipline convex programs. The solutions to the optimization problem are sub-optimal coordinated beamformers. These coordinated beamformers direct each data to the served user equipments (UEs) in each cell without interference during downlink transmission, thereby maximizing the system-wide spectral efficiency.

Keywords: coordinated beamforming, convex optimization, inter-cell interference, multi-antenna, multi-cell, spectral efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366
967 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

In the present time, energy crises is considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which heat recovery system generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.

Keywords: Solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
966 The Data Processing Electronics of the METIS Coronagraph aboard the ESA Solar Orbiter Mission

Authors: M. Focardi, M. Pancrazzi, M. Uslenghi, G. Nicolini, E. Magli, F. Landini, M. Romoli, A. Bemporad, E. Antonucci, S. Fineschi, G. Naletto, P. Nicolosi, D. Spadaro, V. Andretta

Abstract:

METIS is the Multi Element Telescope for Imaging and Spectroscopy, a Coronagraph aboard the European Space Agency-s Solar Orbiter Mission aimed at the observation of the solar corona via both VIS and UV/EUV narrow-band imaging and spectroscopy. METIS, with its multi-wavelength capabilities, will study in detail the physical processes responsible for the corona heating and the origin and properties of the slow and fast solar wind. METIS electronics will collect and process scientific data thanks to its detectors proximity electronics, the digital front-end subsystem electronics and the MPPU, the Main Power and Processing Unit, hosting a space-qualified processor, memories and some rad-hard FPGAs acting as digital controllers.This paper reports on the overall METIS electronics architecture and data processing capabilities conceived to address all the scientific issues as a trade-off solution between requirements and allocated resources, just before the Preliminary Design Review as an ESA milestone in April 2012.

Keywords: Solar Coronagraph, Data Processing Electronics, VIS and UV/EUV Detectors, LEON Processor, Rad-hard FPGAs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
965 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc

Abstract:

The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and /or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: Battery bank, photo-voltaic, pump-storage, wind energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4063
964 Design of a Compact Herriott Cell for Heat Flux Measurement Applications

Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz

Abstract:

In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.

Keywords: Heat flux, herriott cell, optical beam deflection, thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
963 On using PEMFC for Electrical Power Generation on More Electric Aircraft

Authors: Jenica Ileana Corcau, Liviu Dinca

Abstract:

The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing electrical generation and distribution systems of an aircraft. The dynamic characteristics of fuel cell systems necessitate an adaptation of the electrical power system. The architecture studied in this paper consists of a 50kW fuel cell, a dc to dc converter and several loads. The dc to dc converter is used to step down the fuel cell voltage from about 625Vdc to 28Vdc.

Keywords: Electrical power system, More Electric Aircraft, Fuel Cell, dc to dc converter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139