Search results for: soil moisture index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2060

Search results for: soil moisture index

1850 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhale Al-Busoda, Laith Kadim Al-Anbarry

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, while the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 30%, and an uplift pressure decrease of 10% to 30%.

Keywords: Expansive Soil, Piles, under reamed, wetting drying cycles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
1849 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: Soil-structure interaction, response-spectrum analysis, finite element method, multi-storey buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
1848 Terminal Wiener Index for Graph Structures

Authors: J. Baskar Babujee, J. Senbagamalar,

Abstract:

The topological distance between a pair of vertices i and j, which is denoted by d(vi, vj), is the number of edges of the shortest path joining i and j. The Wiener index W(G) is the sum of distances between all pairs of vertices of a graph G. W(G) = i

Keywords: Graph, Degree, Distance, Pendent vertex, Wiener index, Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
1847 Development for the Evaluation Index of an Anesthesia Depth using the Bispectrum Analysis

Authors: Soo-young Ye, Jun-mo Park, Jae-hyung Kim, Jae-hee Jung, Ah-young Jeon, In-cheol Kim, Jung-man Son, Ki-gon Nam, Seong-wan Baik, Jung-hoon Ro, Gye-rok Jeon

Abstract:

The linear SEF (Spectral Edge Frequency) parameter and spectrum analysis method can not reflect the non-linear of EEG. This method can not contribute to acquire real time analysis and obtain a high confidence in the clinic due to low discrimination. To solve the problems, the development of a new index is carried out using the bispectrum analyzing the EEG(electroencephalogram) including the non-linear characteristic. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. New index could afford to effectively discriminate the awake and anesthesia state.

Keywords: Bispectrum, anesthesia depth, EEG, SEF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
1846 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil

Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju

Abstract:

Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.

Keywords: Rice husk ash, pozzolans, paddy rice, lateritic clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780
1845 Poultry Manure and Its Derived Biochar as a Soil Amendment for Newly Reclaimed Sandy Soils under Arid and Semi-Arid Conditions

Authors: W. S. Mohamed, A. A. Hammam

Abstract:

Sandy soils under arid and semi-arid conditions are characterized by poor physical and biochemical properties such as low water retention, rapid organic matter decomposition, low nutrients use efficiency, and limited crop productivity. Addition of organic amendments is crucial to develop soil properties and consequently enhance nutrients use efficiency and lessen organic carbon decomposition. Two years field experiments were developed to investigate the feasibility of using poultry manure and its derived biochar integrated with different levels of N fertilizer as a soil amendment for newly reclaimed sandy soils in Western Desert of El-Minia Governorate, Egypt. Results of this research revealed that poultry manure and its derived biochar addition induced pronounced effects on soil moisture content at saturation point, field capacity (FC) and consequently available water. Data showed that application of poultry manure (PM) or PM-derived biochar (PMB) in combination with inorganic N levels had caused significant changes on a range of the investigated sandy soil biochemical properties including pH, EC, mineral N, dissolved organic carbon (DOC), dissolved organic N (DON) and quotient DOC/DON. Overall, the impact of PMB on soil physical properties was detected to be superior than the impact of PM, regardless the inorganic N levels. In addition, the obtained results showed that PM and PM application had the capacity to stimulate vigorous growth, nutritional status, production levels of wheat and sorghum, and to increase soil organic matter content and N uptake and recovery compared to control. By contrast, comparing between PM and PMB at different levels of inorganic N, the obtained results showed higher relative increases in both grain and straw yields of wheat in plots treated with PM than in those treated with PMB. The interesting feature of this research is that the biochar derived from PM increased treated sandy soil organic carbon (SOC) 1.75 times more than soil treated with PM itself at the end of cropping seasons albeit double-applied amount of PM. This was attributed to the higher carbon stability of biochar treated sandy soils increasing soil persistence for carbon decomposition in comparison with PM labile carbon. It could be concluded that organic manures applied to sandy soils under arid and semi-arid conditions are subjected to high decomposition and mineralization rates through crop seasons. Biochar derived from organic wastes considers as a source of stable carbon and could be very hopeful choice for substituting easily decomposable organic manures under arid conditions. Therefore, sustainable agriculture and productivity in newly reclaimed sandy soils desire one high rate addition of biochar derived from organic manures instead of frequent addition of such organic amendments.

Keywords: Biochar, dissolved organic carbon, N-uptake, poultry, sandy soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
1844 Effect of Process Parameters on the Proximate Composition, Functional and Sensory Properties

Authors: C. I. Omohimi, O. P. Sobukola, K. O. Sarafadeen, L.O. Sanni

Abstract:

Flour from Mucuna beans (Mucuna pruriens) were used in producing texturized meat analogue using a single screw extruder to monitor modifications on the proximate composition and the functional properties at high moisture level. Response surface methodology based on Box Behnken design at three levels of barrel temperature (110, 120, 130°C), screw speed (100,120,140rpm) and feed moisture (44, 47, 50%) were used in 17 runs. Regression models describing the effect of variables on the product responses were obtained. Descriptive profile analyses and consumer acceptability test were carried out on optimized flavoured extruded meat analogue. Responses were mostly affected by barrel temperature and moisture level and to a lesser extent by screw speed. Optimization results based on desirability concept indicated that a barrel temperature of 120.15°C, feed moisture of 47% and screw speed of 119.19 rpm would produce meat analogue of preferable proximate composition, functional and sensory properties which reveals consumers` likeness for the product.

Keywords: Functional properties, mucuna bean flour, optimization, proximate composition, texturized meat analogue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2939
1843 The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact

Authors: H. Aissa, L. Mouzai, M. Bouhadef

Abstract:

The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.

Keywords: Splash distribution, water drop, slope steepness, soil detachment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1842 Construction Technology of Modified Vacuum Pre-Loading Method for Slurry Dredged Soil

Authors: Ali H. Mahfouz, Gao Ming-Jun, Mohamad Sharif

Abstract:

Slurry dredged soil at coastal area has a high water content, poor permeability, and low surface intensity. Hence, it is infeasible to use vacuum preloading method to treat this type of soil foundation. For the special case of super soft ground, a floating bridge is first constructed on muddy soil and used as a service road and platform for implementing the modified vacuum preloading method. The modified technique of vacuum preloading and its construction process for the super soft soil foundation improvement is then studied. Application of modified vacuum preloading method shows that the technology and its construction process are highly suitable for improving the super soft soil foundation in coastal areas.

Keywords: Super soft foundation, dredger fill, vacuum preloading, foundation treatment, construction technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1841 Comparison of Diagnostic Performance of Soluble Transferrin Receptor and Soluble Transferrin Receptor-Ferritin Index Tests in the Diagnosis of Iron Deficiency Anemia

Authors: Hafiz Muhammad Obaid, Bilal Wajid, Nauman Haider, Muhammad Zafrullah

Abstract:

In this research article, a comprehensive analysis is performed to compare the diagnostic performance of soluble transferrin receptor (sTfR) and sTfR/log ferritin index tests in the differential diagnosis of iron deficiency anemia (IDA) and anemia of chronic disease (ACD). The analysis is performed for both sTfR and sTfR/log ferritin index using a set of 11 studies. The overall odds ratios for sTfR and sTfR/log ferritin index were 36.79 and 119.32 respectively, using 95% confidence interval. The relative sensitivity, specificity. positive likelihood ratio (LR) and negative LR values for sTfR in relation to sTfR/log ferritin index were 81% vs 85%, 84% vs 93%, 6.31 vs 13.95 and 0.18 vs 0.14 respectively. The summary receiver operating characteristic (SROC) curves are also plotted for both sTfR and sTfR/log ferritin index. The area under SROC curves for sTfR and sTfR/log ferritin index was found to be 0.9296 and 0.9825 respectively. Although both tests are useful, the sTfR/log ferritin index seems to be more effective when compared with sTfR.

Keywords: Anemia, sTfR, iron deficiency, ferritin, odds ratio, sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
1840 Experimental Investigation and Sensitivity Analysis for the Effects of Fracture Parameters to the Conductance Properties of Laterite

Authors: Bai Wei, Kong Ling-Wei, Guo Ai-Guo

Abstract:

This experiment discusses the effects of fracture parameters such as depth, length, width, angle and the number of the fracture to the conductance properties of laterite using the DUK-2B digital electrical measurement system combined with the method of simulating the fractures. The results of experiment show that the changes of fracture parameters produce effects to the conductance properties of laterite. There is a clear degressive period of the conductivity of laterite during increasing the depth, length, width, or the angle and the quantity of fracture gradually. When the depth of fracture exceeds the half thickness of the soil body, the conductivity of laterite shows evidently non-linear diminishing pattern and the amplitude of decrease tends to increase. The length of fracture has fewer effects than the depth to the conductivity. When the width of fracture reaches some fixed values, the change of the conductivity is less sensitive to the change of the width, and at this time, the conductivity of laterite maintains at a stable level. When the angle of fracture is less than 45°, the decrease of the conductivity is more clearly as the angle increases. But when angle is more than 45°, change of the conductivity is relatively gentle as the angle increases. The increasing quantity of the fracture causes the other fracture parameters having great impact on the change of conductivity. When moisture content and temperature were unchanged, depth and angle of fractures are the major factors affecting the conductivity of laterite soil; quantity, length, and width are minor influencing factors. The sensitivity of fracture parameters affect conductivity of laterite soil is: depth >angles >quantity >length >width.

Keywords: laterite, fracture parameters, conductance properties, conductivity, uniform design, sensitivity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
1839 Reliability Based Investigation on the Choice of Characteristic Soil Properties

Authors: Jann-Eike Saathoff, Kirill Alexander Schmoor, Martin Achmus, Mauricio Terceros

Abstract:

By using partial factors of safety, uncertainties due to the inherent variability of the soil properties and loads are taken into account in the geotechnical design process. According to the reliability index concept in Eurocode-0 in conjunction with Eurocode-7 a minimum safety level of β = 3.8 for reliability class RC2 shall be established. The reliability of the system depends heavily on the choice of the prespecified safety factor and the choice of the characteristic soil properties. The safety factors stated in the standards are mainly based on experience. However, no general accepted method for the calculation of a characteristic value within the current design practice exists. In this study, a laterally loaded monopile is investigated and the influence of the chosen quantile values of the deterministic system, calculated with p-y springs, will be presented. Monopiles are the most common foundation concepts for offshore wind energy converters. Based on the calculations for non-cohesive soils, a recommendation for an appropriate quantile value for the necessary safety level according to the standards for a deterministic design is given.

Keywords: Asymptotic sampling, characteristic value, monopile foundation, probabilistic design, quantile values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
1838 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts

Abstract:

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Keywords: Heavy metals, GIS, multivariate analysis, geoaccumulation index, enrichment factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
1837 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia

Authors: Mohammed Abaoli, Omer Kara

Abstract:

The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam.  Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area. 

Keywords: Commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
1836 Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip

Authors: M. Meftahi, M. Hoseinzadeh, S. A. Naeini

Abstract:

Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies.

Keywords: Adjacent foundation, bearing capacity, reinforcements, settlement, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
1835 ABURAS Index: A Statistically Developed Index for Dengue-Transmitting Vector Population Prediction

Authors: Hani M. Aburas

Abstract:

“Dengue" is an African word meaning “bone breaking" because it causes severe joint and muscle pain that feels like bones are breaking. It is an infectious disease mainly transmitted by female mosquito, Aedes aegypti, and causes four serotypes of dengue viruses. In recent years, a dramatic increase in the dengue fever confirmed cases around the equator-s belt has been reported. Several conventional indices have been designed so far to monitor the transmitting vector populations known as House Index (HI), Container Index (CI), Breteau Index (BI). However, none of them describes the adult mosquito population size which is important to direct and guide comprehensive control strategy operations since number of infected people has a direct relationship with the vector density. Therefore, it is crucial to know the population size of the transmitting vector in order to design a suitable and effective control program. In this context, a study is carried out to report a new statistical index, ABURAS Index, using Poisson distribution based on the collection of vector population in Jeddah Governorate, Saudi Arabia.

Keywords: Poisson distribution, statistical index, prediction, Aedes aegypti.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1834 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials

Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi

Abstract:

Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.

Keywords: Building materials, heat transfer, moisture diffusion, numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
1833 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Authors: Ali Keshavarzi, Fereydoon Sarmadian

Abstract:

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
1832 Soil Organic Carbon Pool Assessment and Chemical Evaluation of Soils in Akure North and South Local Government Area of Ondo State

Authors: B. F. Dada, B. S. Ewulo, M. A. Awodun, S. O. Ajayi

Abstract:

Aggregate soil carbon distribution and stock in the soil in the form of a carbon pool is important for soil fertility and sequestration. The amount of carbon pool and other nutrients statues of the soil are to benefit plants, animal and the environment in the long run. This study was carried out at Akure North and South Local Government; the study area is one of the 18 Local Government Areas of Ondo State in the Southwest geo-political zone of Nigeria. The sites were divided into Map Grids and geo-referenced with Global Positioning System (GPS). Horizons were designated and morphological description carried out on the field. Pedons were characterized and classified according to USDA soil taxonomy. The local government area shares boundaries with; Ikere Local Government (LG) in the North, Ise Orun LG in the northwest, Ifedore LG in the northeast Akure South LG in the East, Ose LG in the South East, and Owo LG in the South. SOC-pool at Federal College of Agriculture topsoil horizon A2 is significantly higher than all horizons, 67.83 th⁻¹. The chemical properties of the pedons have shown that the soil is very strongly acidic to neutral reaction (4.68 – 6.73). The nutrients status of the soil topsoil A1 and A2 generally indicates that the soils have a low potential for retaining plant nutrients, and therefore call for adequate soil management.

Keywords: Soil organic carbon, horizon, pedon, Akure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
1831 Comparison of the Parameter using ECG with Bisepctrum Parameter using EEG during General Anesthesia

Authors: Seong-wan Baik, Soo-young Ye, Byeong-cheol Choi, Gye-rok Jeon

Abstract:

The measurement of anesthetic depth is necessary in anesthesiology. NN10 is very simple method among the RR intervals analysis methods. NN10 parameter means the numbers of above the 10 ms intervals of the normal to normal RR intervals. Bispectrum analysis is defined as 2D FFT. EEG signal reflected the non-linear peristalsis phenomena according to the change brain function. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. In this paper, the relation between NN10 parameter using ECG and bisepctrum index using EEG is observed to estimate the depth of anesthesia during anesthesia and then we estimated the utility of the anesthetic.

Keywords: Anesthesia, Bispectrum index, ECG, EEG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
1830 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: Soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
1829 The Effects of Soil Chemical Characteristics on Accumulation of Native Selenium by Zea mays Grains in Maize Belt in Kenya

Authors: S. B. Otieno, T. S. Jayne, M. Muyanga

Abstract:

Selenium is an-antioxidant which is important for human health enters food chain through crops. In Kenya Zea mays is consumed by 96% of population hence is a cheap and convenient method to provide selenium to large number of population. Several soil factors are known to have antagonistic effects on selenium speciation hence the uptake by Zea mays. There are no studies in Kenya that has been done to determine the effects of soil characteristics (pH, Tcarbon, CEC, Eh) affect accumulation of selenium in Zea mays grains in Maize Belt in Kenya. About 100 Zea mays grain samples together with 100 soil samples were collected from the study site put in separate labeled Ziplocs and were transported to laboratories at room temperature for analysis. Maize grains were analyzed for selenium while soil samples were analyzed for pH, Cat Ion Exchange Capacity, total carbon, and electrical conductivity. The mean selenium in Zea mays grains varied from 1.82 ± 0.76 mg/Kg to 11±0.86 mg/Kg. There was no significant difference between selenium levels between different grain batches {χ (Df =76) = 26.04 P= 1.00} The pH levels varied from 5.43± 0.58 to 5.85± 0.32. No significant correlations between selenium in grains and soil pH (Pearson’s correlations = - 0.143), and between selenium levels in grains and the four (pH, Tcarbon, CEC, Eh) soil chemical characteristics {F (4,91) = 0.721 p = 0.579} was observed. It can be concluded that the soil chemical characteristics in the study site did not significantly affect the accumulation of native selenium in Zea mays grains.

Keywords: Maize, native, soil, selenium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
1828 Mapping Soil Fertility at Different Scales to Support Sustainable Brazilian Agriculture

Authors: Rachel Bardy Prado, Vinícius de Melo Benites, José Carlos Polidoro, Carlos Eduardo Gonçalves, Alexey Naumov

Abstract:

Most agricultural crops cultivated in Brazil are highly nutrient demanding. Brazilian soils are generally acidic with low base saturation and available nutrients. Demand for fertilizer application has increased because the national agricultural sector expansion. To improve productivity without environmental impact, there is the need for the utilization of novel procedures and techniques to optimize fertilizer application. This includes the digital soil mapping and GIS application applied to mapping in different scales. This paper is based on research, realized during 2005 to 2010 by Brazilian Corporation for Agricultural Research (EMBRAPA) and its partners. The purpose was to map soil fertility in national and regional scales. A soil profile data set in national scale (1:5,000,000) was constructed from the soil archives of Embrapa Soils, Rio de Janeiro and in the regional scale (1:250,000) from COMIGO Cooperative soil data set, Rio Verde, Brazil. The mapping was doing using ArcGIS 9.1 tools from ESRI.

Keywords: agricultural sustainability, fertilizer optimization, GIS, soil attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1827 A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum

Authors: Adnan F. Sheikh, Fayaz A. Mir

Abstract:

After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples.

Keywords: Comprehensive flood management programme, dredge soil, strength characteristics, flood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
1826 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan

Abstract:

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor, Armenia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
1825 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices

Authors: M. O. Oke, T. S. Workneh

Abstract:

Drying behavior of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80°C) and ten sweet potato varieties sliced to 5mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27 - 6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.

Keywords: Sweet Potato Slice, Drying Models, Moisture Ratio, Moisture Diffusivity, Activation Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2956
1824 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils

Authors: Ákos Wolf, Richard P. Ray

Abstract:

Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils

Keywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
1823 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads

Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad

Abstract:

Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.

Keywords: Reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
1822 Prediction of Phenolic Compound Migration Process through Soil Media using Artificial Neural Network Approach

Authors: Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, Sudipta Ghosh

Abstract:

This study presents the application of artificial neural network for modeling the phenolic compound migration through vertical soil column. A three layered feed forward neural network with back propagation training algorithm was developed using forty eight experimental data sets obtained from laboratory fixed bed vertical column tests. The input parameters used in the model were the influent concentration of phenol(mg/L) on the top end of the soil column, depth of the soil column (cm), elapsed time after phenol injection (hr), percentage of clay (%), percentage of silt (%) in soils. The output of the ANN was the effluent phenol concentration (mg/L) from the bottom end of the soil columns. The ANN predicted results were compared with the experimental results of the laboratory tests and the accuracy of the ANN model was evaluated.

Keywords: Modeling, Neural Networks, Phenol, Soil media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
1821 Shock Response Analysis of Soil–Structure Systems Induced by Near–Fault Pulses

Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian

Abstract:

Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by shock response spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear soil–structure interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.

Keywords: Nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274