Search results for: seal chamber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 199

Search results for: seal chamber

169 Numerical Study of Oxygen Enrichment on NO Pollution Spread in a Combustion Chamber

Authors: Zohreh Orshesh

Abstract:

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aim to obtain detailed information on combustion characteristics and _ nitrogen oxides in the furnace and the effect of oxygen enrichment in a combustion process. Oxygenenriched combustion is an effective way to reduce emissions. This paper analyzes NO emission, including thermal NO and prompt NO. Flow rate ratio of air to fuel is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.32 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Results show that for AF=1.3, increase the oxygen flow rate of oxygen reduction in NO emissions is Lance. Moreover, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak, but not the NO emission rate. As a result, oxygen enrichment can reduce the NO emission at this kind of furnace in low air to fuel rates.

Keywords: Combustion chamber, Oxygen enrichment, Reynolds Averaged Navier- Stokes, NO emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
168 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge

Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas

Abstract:

Compressed natural gas (CNG) is primarily composed of methane (CH4), and has a lower carbon to hydrogen ratio than other hydrocarbon fuels such as gasoline (C8H18) and diesel (C12H23). Consequently, it has the potential to reduce CO2 emissions compared to conventional fuels. Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels, its main component, CH4, burns at a slower rate compared to the conventional fuels. A higher pressure and leaner cylinder environment will unravel the slow burn characteristic of CH4. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful a CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJI, which contains small orifices that connect the pre-chamber to the main chamber, providing the right mixture of fuel and air has been identified as a key challenge due to the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem of scavenging which contributed to the factors that reduces the TJI performance. Combustion residual gases such as CO2, CO and NOx from the previous combustion cycle dilute the pre-chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By supplying air into the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of the combustion. An investigation of the 3D combustion characteristics of a CNG-fueled SI engine using a direct injection fuelling strategy employing an air channel in the prechamber is presented in this paper. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 revolutions per minute (rpm), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as a baseline. With a validated baseline engine simulation, the settings were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the study of (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and conventional  spark plug ignition. In conclusion, the active pre-chamber with an air channel demonstrated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.

Keywords: Turbulent Jet Ignition, Active Air Control Turbulent Jet Ignition, Pre-chamber ignition system, Active and Passive Pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92
167 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: Air flow, biomass combustion, feedback control system, fuel feeding, ladder logic, programmable logic controller, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511
166 Experimental and Numerical Investigation of Air Ejector with Diffuser with Boundary Layer Suction

Authors: Vaclav Dvorak

Abstract:

The article deals with experimental and numerical investigation of axi-symmetric subsonic air to air ejector with diffuser adapted for boundary layer suction. The diffuser, which is placed behind the mixing chamber of the ejector, has high divergence angle and therefore low efficiency. To increase the efficiency, the diffuser is equipped with slot enabling boundary layer suction. The effect of boundary layer suction on flow in ejector, static pressure distribution on the mixing chamber wall and characteristic were measured and studied numerically. Both diffuser and ejector efficiency were evaluated. The diffuser efficiency was increased, however, the efficiency of ejector itself remained low.

Keywords: Air ejector, boundary layer suction, CFD, diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2769
165 A Sliding Mesh Technique and Compressibility Correction Effects of Two-equation Turbulence Models for a Pintle-Perturbed Flow Analysis

Authors: J. Y. Heo, H. G. Sung

Abstract:

Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulence models suitable for large scale separation flows perturbed by pintle strokes. In order to take into account pintle movement, a sliding mesh method was applied. The chamber pressure, mass flow rate, and thrust have been analyzed, and the response lag and sensitivity at the chamber and nozzle were estimated for a movable pintle. The nozzle performance for pintle reciprocating as its insertion and extraction processes, were analyzed to better understand the dynamic performance of the pintle nozzle.

Keywords: Pintle, sliding mesh, turbulent model, compressibility correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
164 Decreasing Environmental Pollution in Superphosphate Production Using Apatite and Phosphorite Mixture

Authors: R. Guliyev

Abstract:

The enhanced need for food items is receiving more importance due to a gradual increase in the world population and, in this scenario, fertilizers play a very important role in agriculture. In this study, the production of the normal superphosphate was investigated with a continuous chamber method by adding potassium chloride to a mixture of Hibin apatite and Kingisepp phosphorite. In the experiments, the following parameters were selected: The concentration of sulfuric acid (54–66% (w/w)), the stoichiometric norm of sulfuric acid (100, 107, 110, 114% (w/w)), the ratio of apatite/phosphorite in the mixture of phosphate (95/5, 90/10, 85/15, 80/20, 75/25, 70/30, 65/35,60/40, 55/45, 50/50 (w/w)), potassium chloride/the mixture of phosphate (1/50, 2/50, 3/50,4/50, 5/50 (w/w)), and the reaction time (2–8 min). It was observed that by adding potassium chloride to a low-grade phosphorite and using it to substitute a fraction of high-grade apatite in the normal superphosphate production not only resulted in a high-quality product but also eliminated the waiting period for the maturation of superphosphate in the storage. The objective of this study was to produce a normal superphosphate fertilizer by using a continuous chamber method in order to accelerate the production process and to reduce the environmental pollution caused by fluoride gases by eliminating the maturation time in the storage.

Keywords: Continuous chamber method, environmental pollution, fluoride gases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
163 Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines

Authors: Zoran Jovanovic, Zoran Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.

Keywords: Automotive flows, flame propagation, combustion modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
162 Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel

Authors: Roman Kalvin, Anam Nadeem, Saba Arif

Abstract:

Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted.

Keywords: Turbocharger, turbine blades, structural steel, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
161 Numerical Study on CO2 Pollution in an Ignition Chamber by Oxygen Enrichment

Authors: Zohreh Orshesh

Abstract:

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aims to obtain accurate information about the profile of the combustion in the furnace and also check the effect of oxygen enrichment on the combustion process. Oxygen enrichment is an effective way to reduce combustion pollutant. The flow rate of air to fuel ratio is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. Combustion simulations typically involve the solution of the turbulent flows with heat transfer, species transport and chemical reactions. It is common to use the Reynolds-averaged form of the governing equation in conjunction with a suitable turbulence model. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.3 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Species mass fractions at the wall are assumed to have zero normal gradients.Results show that minimum mole fraction of CO2 happens when the flow rate ratio of air to fuel is 5.1. Additionally, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak. As a result, oxygen-enrichment can reduce the CO2 emission at this kind of furnace in high air to fuel rates.

Keywords: Combustion chamber, Oxygen enrichment, Reynolds Averaged Navier- Stokes, CO2 emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
160 Study on the Effect of Weight Percentage Variation and Size Variation of Magnesium Ferrosilicon Added, Gating System Design and Reaction Chamber Design on Inmold Process

Authors: A. Miss May Thu Zar Myint, B. Dr. Kay Thi Lwin

Abstract:

This research focuses on the effect of weight percentage variation and size variation of MgFeSi added, gating system design and reaction chamber design on inmold process. By using inmold process, well-known problem of fading is avoided because the liquid iron reacts with magnesium in the mold and not, as usual, in the ladle. During the pouring operation, liquid metal passes through the chamber containing the magnesium, where the reaction of the metal with magnesium proceeds in the absence of atmospheric oxygen [1].In this paper, the results of microstructural characteristic of ductile iron on this parameters are mentioned. The mechanisms of the inmold process are also described [2]. The data obtained from this research will assist in producing the vehicle parts and other machinery parts for different industrial zones and government industries and in transferring the technology to all industrial zones in Myanmar. Therefore, the inmold technology offers many advantages over traditional treatment methods both from a technical and environmental, as well as an economical point of view. The main objective of this research is to produce ductile iron castings in all industrial sectors in Myanmar more easily with lower costs. It will also assist the sharing of knowledge and experience related to the ductile iron production.

Keywords: ductile iron, inmold process, magnesiumtreatment, microstructural characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
159 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test

Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad

Abstract:

The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7  to 132 , 224 , and 396  in presence of 15 cm, 20 cm, and 30 cm base course, respectively.

Keywords: Base course, calibration chamber, plate load test, loose sand, subgrade reaction coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
158 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: Bioelectricity, chemical oxygen demand, microbial fuel cell, sanitary wastewater, wheat starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
157 Experimental Study of Exhaust Muffler System for Direct-Injection Gasoline Engine

Authors: Abdallah F. Abd El-Mohsen, Ahmed A. Abdelsamee, Nouby M. Ghazaly

Abstract:

Engine exhaust noise is considered one of the largest sources of vehicle exterior noise. Further reduction of noise from the vehicle exhaust system will be required, as the vehicle exterior noise regulations become stricter. Therefore, the present study has been carried out to illustrate the role of engine operating parameters and exhaust system construction factors on exhaust noise emitted. The measurements carried out using different exhaust systems, which are mainly used in today’s vehicle. The effect of engine speed on the spectra level of exhaust noise is recorded at engine speeds of 900 rpm, 1800 rpm, 2700, rpm 3600 rpm and 4500 rpm. The results indicate that the increase of engine speed causes a significant increase in the spectrum level of exhaust noise. The increase in the number of the outlet of the expansion chamber also reduces the overall level of exhaust noise.

Keywords: Exhaust system, engine speed, expansion chamber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568
156 An Investigation into Air Ejector with Pulsating Primary Flow

Authors: Václav Dvořák, Petra Dančová

Abstract:

The article deals with pneumatic and hot wire anemometry measurement on subsonic axi-symmetric air ejector. Performances of the ejector with and without pulsations of primary flow are compared, measuring of characteristic pressures and mass flow rates are performed and ejector efficiency is evaluated. The pulsations of primary flow are produced by a synthetic jet generator, which is placed in the supply line of the primary flow just in front of the primary nozzle. The aim of the pulsation is to intensify the mixing process. In the article we present: Pressure measuring of pulsation on the mixing chamber wall, behind the mixing chamber and behind the diffuser measured by fast pressure transducers and results of hot wire anemometry measurement. It was found out that using of primary flow pulsations yields higher back pressure behind the ejector and higher efficiency. The processes in this ejector and influences of primary flow pulsations on the mixing processes are described.

Keywords: Air ejector, pulsation flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
155 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study

Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho

Abstract:

The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.

Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
154 Orchestra Course Outcomes in Terms of Values Education

Authors: Z. Kurtaslan, H. Hakan Okay, E. Can Dönmez, I. Kuçukdoğan

Abstract:

Music education aims to bring up individuals most appropriately and to advanced levels as a balanced whole physically, cognitively, affectively, and kinesthetically while making a major contribution to the physical and spiritual development of the individual. The most crucial aim of music education, an influential education medium per se, is to make music be loved; yet, among its educational aims are concepts such as affinity, friendship, goodness, philanthropy, responsibility, and respect all extremely crucial bringing up individuals as a balanced whole. One of the most essential assets of the music education is the training of making music together, solidifying musical knowledge and enabling the acquisition of cooperation. This habit requires internalization of values like responsibility, patience, cooperativeness, respect, self-control, friendship, and fairness. If musicians lack these values, the ensemble will become after some certain time a cacophony. In this qualitative research, the attitudes of music teacher candidates in orchestra/chamber music classes will be examined in terms of values.

Keywords: Education, music, orchestra/chamber music, values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
153 Mechanical Simulation with Electrical and Dimensional Tests for AISHa Containment Chamber

Authors: F. Noto, G. Costa, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

At Istituto Nazionale di Fisica Nucleare – Laboratorio Nazionale del Sud (INFN-LNS), a broad experience in the design, construction and commissioning of ECR and microwave ion sources is available. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations, which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadron therapy facility using heavy ions. In this paper, we analyzed the dimensional test and electrical test about an innovative solution for the containment chamber that allows us to solve our isolation and structural problems.

Keywords: FEM Analysis, ECR ion source, dielectrical measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
152 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator

Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu

Abstract:

This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.

Keywords: Actuator, nozzle, microejector, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
151 Exergy Based Performance Analysis of a Gas Turbine Unit at Various Ambient Conditions

Authors: Idris A. Elfeituri

Abstract:

This paper studies the effect of ambient conditions on the performance of a 285 MW gas turbine unit using the exergy concept. Based on the available exergy balance models developed, a computer program has been constructed to investigate the performance of the power plant under varying ambient temperature and relative humidity conditions. The variations of ambient temperature range from zero to 50 ºC and the relative humidity ranges from zero to 100%, while the unit load kept constant at 100% of the design load. The exergy destruction ratio and exergy efficiency are determined for each component and for the entire plant. The results show a moderate increase in the total exergy destruction ratio of the plant from 62.05% to 65.20%, while the overall exergy efficiency decrease from 38.2% to 34.8% as the ambient temperature increases from zero to 50 ºC at all relative humidity values. Furthermore, an increase of 1 ºC in ambient temperature leads to 0.063% increase in the total exergy destruction ratio and 0.07% decrease in the overall exergy efficiency. The relative humidity has a remarkable influence at higher ambient temperature values on the exergy destruction ratio of combustion chamber and on exergy loss ratio of the exhaust gas but almost no effect on the total exergy destruction ratio and overall exergy efficiency. At 50 ºC ambient temperature, the exergy destruction ratio of the combustion chamber increases from 30% to 52% while the exergy loss ratio of the exhaust gas decreases from 28% to 8% as the relative humidity increases from zero to 100%. In addition, exergy analysis reveals that the combustion chamber and exhaust gas are the main source of irreversibility in the gas turbine unit. It is also identified that the exergy efficiency and exergy destruction ratio are considerably dependent on the variations in the ambient air temperature and relative humidity. Therefore, the incorporation of the existing gas turbine plant with inlet air cooling and humidifier technologies should be considered seriously.

Keywords: Destruction, exergy, gas turbine, irreversibility, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
150 Modeling and Simulation for Physical Vapor Deposition: Multiscale Model

Authors: Jürgen Geiser, Robert Röhle

Abstract:

In this paper we present modeling and simulation for physical vapor deposition for metallic bipolar plates. In the models we discuss the application of different models to simulate the transport of chemical reactions of the gas species in the gas chamber. The so called sputter process is an extremely sensitive process to deposit thin layers to metallic plates. We have taken into account lower order models to obtain first results with respect to the gas fluxes and the kinetics in the chamber. The model equations can be treated analytically in some circumstances and complicated multi-dimensional models are solved numerically with a software-package (UG unstructed grids, see [1]). Because of multi-scaling and multi-physical behavior of the models, we discuss adapted schemes to solve more accurate in the different domains and scales. The results are discussed with physical experiments to give a valid model for the assumed growth of thin layers.

Keywords: Convection-diffusion equations, multi-scale problem, physical vapor deposition, reaction equations, splitting methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
149 Acoustic Instabilities on Swirling Flames

Authors: T. Parra, R. Z. Szasz, C. Duwig, R. Pérez, V. Mendoza, F. Castro

Abstract:

The POD makes possible to reduce the complete high-dimensional acoustic field to a low-dimensional subspace where different modes are identified and let reconstruct in a simple way a high percentage of the variance of the field.

Rotating modes are instabilities which are commonly observed in swirling flows. Such modes can appear under both cold and reacting conditions but that they have different sources: while the cold flow rotating mode is essentially hydrodynamic and corresponds to the wellknown PVC (precessing vortex core) observed in many swirled unconfined flows, the rotating structure observed for the reacting case inside the combustion chamber might be not hydrodynamically but acoustically controlled. The two transverse acoustic modes of the combustion chamber couple and create a rotating motion of the flame which leads to a self-sustained turning mode which has the features of a classical PVC but a very different source (acoustics and not hydrodynamics).

Keywords: Acoustic field, POD, swirling flames.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
148 Laboratory Evaluation of the Airborne Sound Insulation of Plasterboard Sandwich Panels Filled with Recycled Textile Material

Authors: Svetlana T. Djambova, Natalia B. Ivanova, Roumiana A. Zaharieva

Abstract:

Small size acoustic chamber test method has been applied to experimentally evaluate and compare the airborne sound insulation provided by plasterboard sandwich panels filled with mineral wool and with its alternative from recycled textile material (produced by two different technologies). An original small-size acoustic chamber is used as a sound source room. It has been specially built in a real-size room, which is utilized as a sound receiving room. The experimental results of one of the recycled textile material specimens have demonstrated sound insulation properties similar to those of the mineral wool specimen and even superior in the 1600-3150 Hz frequency range. This study contributes to the improvement of recycled textile material production, as well as to the synergy of heat insulation and sound insulation performances of building materials.

Keywords: Airborne sound insulation, heat insulation products, mineral wool, recycled textile material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52
147 Utilization of Kitchen Waste inside Green House Chamber: A Community Level Biogas Programme

Authors: Ravi P. Agrahari

Abstract:

The present study was undertaken with the objective of evaluating kitchen waste as an alternative organic material for biogas production in community level biogas plant. The field study was carried out for one month (January 19, 2012– February 17, 2012) at Centre for Energy Studies, IIT Delhi, New Delhi, India.

This study involves the uses of greenhouse canopy to increase the temperature for the production of biogas in winter period. In continuation, a semi-continuous study was conducted for one month with the retention time of 30 days under batch system. The gas generated from the biogas plant was utilized for cooking (burner) and lighting (lamp) purposes. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted biogas plant can be efficiently adopted in colder region or in winter season because temperature plays a major role in biogas production. 

Keywords: Biogas, Green house chamber, organic material, solar intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
146 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition

Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla

Abstract:

This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.

Keywords: Characterization, diamond-like carbon, DLC, mechanical properties, pulsed laser deposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
145 Unraveling Biostimulation of Decolorized Mediators for Microbial Fuel Cell-Aided Textile Dye Decontamination

Authors: Pei-Lin Yueh, Bor-Yann Chen, Chuan-Chung Hsueh

Abstract:

This first-attempt study revealed that decolorized intermediates of azo dyes could act as redox mediators to assist wastewater (WW) decolorization due to enhancement of electron-transport phenomena. Electrochemical impedance spectra indicated that hydroxyl and amino-substituent(s) were functional group(s) as redox-mediator(s). As azo dyes are usually multiple benzene-rings structured, their derived decolorized intermediates are likely to play roles of electron shuttles due to lower barrier of energy gap for electron shuttling. According to cyclic voltammetric profiles, redox mediating characteristics of decolorized intermediates of azo dyes (e.g., RBu171, RR198, RR141, RBk5) were clearly disclosed. With supplementation of biodecolorized metabolites of RR141 and 198, decolorization performance of could be evidently augmented. This study also suggested the optimal modes of microbial fuel cell (MFC)-assisted WW decolorization would be plug-flow or batch mode of operation with no mix. Single chamber-MFCs would be more favourable than double chamber MFCs due to non-mixing contacting reactor scheme for operation.

Keywords: Redox mediators, dye decolorization, bioelectricity generation, microbial fuel cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
144 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: Multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
143 Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images

Authors: Faten A. Dawood, Rahmita W. Rahmat, Suhaini B. Kadiman, Lili N. Abdullah, Mohd D. Zamrin

Abstract:

Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.

Keywords: Gaussian operator, median filter, speckle texture, peak signal-to-ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
142 Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber

Authors: Sergey I. Shtork, Aleksey P. Vinokurov, Sergey V. Alekseenko

Abstract:

The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.

Keywords: Acoustic probes, detached eddy simulation (DES), laser-Doppler anemometry (LDA), precessing vortex core (PVC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
141 Experimental Investigation of Combustion Chamber Dimensions Effects on Pollutant Emission and Combustion Efficiency

Authors: K. Bashirnezhad, M. Joleini

Abstract:

The combustion chamber dimensions have important effects on pollutant emission in furnaces as a direct result of temperature distribution and maximum temperature value. In this paper the pollutant emission and the temperature distribution in two cylindrical furnaces with different dimensions (with similar length to diameter ratio) in similar condition have been investigated experimentally. The furnace fuel is gas oil that is used with three different flow rates. The results show that in these two cases the temperature increases to its maximum value quickly, and then decreases slowly. The results also show that increase in fuel flow rate cause to increase in NOx emission in each case, but this increase is greater in small furnace. With increase in fuel flow rate, CO emission decreases firstly, and then it increases. Combustion efficiency reduces with increase in fuel flow rate but the rate of reduction in small furnace is greater than large furnace. The results of axial temperature distribution have been compared with those have been obtained numerically and experimentally by Moghiman.

Keywords: Furnace dimensions, Oxides of Nitrogen, Carbonmonoxide, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
140 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

Authors: Muthana A. M. Jameel Al-Jaboori

Abstract:

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Keywords: Water wave, model, wells turbine, MATLAB program, results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129