Search results for: renewable energy sources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3566

Search results for: renewable energy sources

2516 Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating

Authors: G. Rosaz, V. Semblanet, S. Calatroni, A. Sublet, M. Taborelli

Abstract:

We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnetic profiles. These show a good agreement between the expected and actual values. The qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016 A.cm-2 to 0.074 A.cm-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10-3 mbar and a plasma source power of 300 W.

Keywords: Ion energy distribution, niobium, retarding field energy analyzer, sputtering, SRF cavity, unbalanced magnetron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1161
2515 The Role of Heat Pumps for the Decarbonization of European Regions

Authors: D. M. Mongelli, M. De Carli, L. Carnieletto, F. Busato

Abstract:

This research aims to provide a contribution to the reduction of fossil fuels and the consequent reduction of CO2eq emissions for each European region. Simulations have been carried out to replace fossil fuel fired heating boilers with air-to-water heat pumps, when allowed by favorable environmental conditions (outdoor temperature, water temperature in emission systems, etc.). To estimate the potential coverage of high-temperature heat pumps in European regions, the energy profiles of buildings were considered together with the potential coefficient of performance (COP) of heat pumps operating with flow temperature with variable climatic regulation. The electrification potential for heating buildings was estimated by dividing the 38 European countries examined into 179 territorial units. The yields have been calculated in terms of energy savings and CO2eq reduction.

Keywords: Decarbonization, Space heating, Heat pumps, Energy policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109
2514 Newtonian Mechanics Descriptions for General Relativity Experimental Tests, Dark Matter and Dark Energy

Authors: Jing-Gang Xie

Abstract:

As the continuation to the previous studies of gravitational frequency shift, gravitational time dilation, gravitational light bending, gravitational waves, dark matter, and dark energy are explained in the context of Newtonian mechanics. The photon is treated as the particle with mass of hν/C2 under the gravitational field of much larger mass of M. Hence the quantum mechanics theory could be applied to gravitational field on cosmology scale. The obtained results are the same as those obtained by general relativity considering weak gravitational field approximation; however, the results are different when the gravitational field is substantially strong.

Keywords: Gravitational time dilation, gravitational light bending, gravitational waves, dark matter, dark energy, General Relativity, gravitational frequency shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
2513 Modified Genome-Scale Metabolic Model of Escherichia coli by Adding Hyaluronic Acid Biosynthesis-Related Enzymes (GLMU2 and HYAD) from Pasteurella multocida

Authors: P. Pasomboon, P. Chumnanpuen, T. E-kobon

Abstract:

Hyaluronic acid (HA) consists of linear heteropolysaccharides repeat of D-glucuronic acid and N-acetyl-D-glucosamine. HA has various useful properties to maintain skin elasticity and moisture, reduce inflammation, and lubricate the movement of various body parts without causing immunogenic allergy. HA can be found in several animal tissues as well as in the capsule component of some bacteria including Pasteurella multocida. This study aimed to modify a genome-scale metabolic model of Escherichia coli using computational simulation and flux analysis methods to predict HA productivity under different carbon sources and nitrogen supplement by the addition of two enzymes (GLMU2 and HYAD) from P. multocida to improve the HA production under the specified amount of carbon sources and nitrogen supplements. Result revealed that threonine and aspartate supplement raised the HA production by 12.186%. Our analyses proposed the genome-scale metabolic model is useful for improving the HA production and narrows the number of conditions to be tested further.

Keywords: Pasteurella multocida, Escherichia coli, hyaluronic acid, genome-scale metabolic model, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
2512 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach

Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin

Abstract:

Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.

Keywords: Reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
2511 An Energy Integration Approach on UHDE Ammonia Process

Authors: Alnouss M. Ahmed, Al-Nuaimi A. Ibrahim

Abstract:

In this paper, the energy performance of a selected UHDE Ammonia plant is optimized by conducting heat integration through waste heat recovery and the synthesis of a heat exchange network (HEN). Minimum hot and cold utility requirements were estimated through IChemE spreadsheet. Supporting simulation was carried out using HYSYS software. The results showed that there is no need for heating utility while the required cold utility was found to be around 268,714 kW. Hence a threshold pinch case was faced. Then, the hot and cold streams were matched appropriately. Also, waste heat recovered resulted with savings in HP and LP steams of approximately 51.0% and 99.6%, respectively. An economic analysis on proposed HEN showed very attractive overall payback period not exceeding 3 years. In general, a net saving approaching 35% was achieved in implementing heat optimization of current studied UHDE Ammonia process.

Keywords: Ammonia, Energy Optimization, Heat Exchange Network and Techno-Economic Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4496
2510 Energy Efficient Clustering and Data Aggregation in Wireless Sensor Networks

Authors: Surender Kumar Soni

Abstract:

Wireless Sensor Networks (WSNs) are wireless networks consisting of number of tiny, low cost and low power sensor nodes to monitor various physical phenomena like temperature, pressure, vibration, landslide detection, presence of any object, etc. The major limitation in these networks is the use of nonrechargeable battery having limited power supply. The main cause of energy consumption WSN is communication subsystem. This paper presents an efficient grid formation/clustering strategy known as Grid based level Clustering and Aggregation of Data (GCAD). The proposed clustering strategy is simple and scalable that uses low duty cycle approach to keep non-CH nodes into sleep mode thus reducing energy consumption. Simulation results demonstrate that our proposed GCAD protocol performs better in various performance metrics.

Keywords: Ad hoc network, Cluster, Grid base clustering, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
2509 The Security Trade-Offs in Resource Constrained Nodes for IoT Application

Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve

Abstract:

The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.

Keywords: Internet of Things, IEEE 802.15.4, security cost evaluation, wireless sensor network, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
2508 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279
2507 Investigation of Regenerative and Recuperative Burners for Different Sizes of Reheating Furnaces

Authors: Somkiat Tangjitsitcharoen, Suthas Ratanakuakangwan, Matchulika Khonmeak, Nattadate Fuangworawong

Abstract:

This research aims to analyze the regenerative burner and the recuperative burner for the different reheating furnaces in the steel industry. The warm air temperatures of the burners are determined to suit with the sizes of the reheating furnaces by considering the air temperature, the fuel cost and the investment cost. The calculations of the payback period and the net present value are studied to compare the burners for the different reheating furnaces. The energy balance is utilized to calculate and compare the energy used in the different sizes of reheating furnaces for each burner. It is found that the warm air temperature is different if the sizes of reheating furnaces are varied. Based on the considerations of the net present value and the payback period, the regenerative burner is suitable for all plants at the same life of the burner. Finally, the sensitivity analysis of all factors has been discussed in this research.

Keywords: Energy Balance, Recuperative Burner, Regenerative Burner, Reheating Furnace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6396
2506 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach

Authors: Uttam Vijay, Nitin Gupta

Abstract:

Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.

Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
2505 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022
2504 Viscosity of Vegetable Oils and Biodiesel and Energy Generation

Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira

Abstract:

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Keywords: Biofuel, energy generation, vegetable oil, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9535
2503 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study

Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari

Abstract:

The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two wellknown scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a casestudy. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means, which allows simulating the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With this model is possible to obtain quite accurate and reliable results that allow identifying effective combinations building-HVAC system. The second step has consisted of using output data obtained as input to the calculation model, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing determining the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while our calculation model provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model for different design options.

Keywords: Energy, Buildings, Systems, Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
2502 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto γ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Catalytic combustion of methane is imperative due to stability of methane at low temperature. Methane (CH4), therefore, remains unconverted in vehicle exhausts thereby causing greenhouse gas GHG emission problem. In this study, heterogeneous catalysts of palladium with bio-char (2 wt% Pd/Bc) and Al2O3 (2wt% Pd/ Al2O3) supports were prepared by incipient wetness impregnation and then subsequently tested for catalytic combustion of CH4. Support-porous heterogeneous catalytic combustion (HCC) material were selected based on factors such as surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. Sustainable and renewable support-material of bio-mass char derived from palm shell waste material was compared with those from the conventional support-porous materials. Kinetic rate of reaction was determined for combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc). Material characterization was done using TGA, SEM, and BET surface area. The performance test was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. The methane porous-HCC conversion was carried out using online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature was 2wt% Pd/Bc>calcined 2wt% Pd/ Al2O3> 2wt% Pd/ Al2O3>calcined 2wt% Pd/Bc. Hence agro waste material can successfully be utilized as an inexpensive catalyst support material for enhanced CH4 catalytic combustion.

Keywords: Catalytic-combustion, Environmental, Support-bio-char material, Sustainable, Renewable material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5983
2501 Experimental Study of Boost Converter Based PV Energy System

Authors: T. Abdelkrim, K. Ben seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa

Abstract:

This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC microcontroller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.

Keywords: Boost converter, Microcontroller, Photovoltaic power generation, Shading cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3948
2500 Effect of Blade Shape on the Performance of Wells Turbine for Wave Energy Conversion

Authors: Katsuya Takasaki, Manabu Takao, Toshiaki Setoguchi

Abstract:

The effect of a 3-dimensional (3D) blade on the turbine characteristics of Wells turbine for wave energy conversion has been investigated experimentally by model testing under steady flow conditions in this study, in order to improve the peak efficiency and stall characteristics. The aim of use of 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant with radius and the blade profile changes gradually from the mean radius to tip. The proposed blade profiles in the study are NACA0015 from the hub to mean radius and NACA0025 at the tip. The performances of Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e., the turbine with 2-dimensional (2D) blades. As a result, it was concluded that although the peak efficiency of Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the weakness of stalling.

Keywords: Fluid machinery, ocean engineering, stall, wave energy conversion, Wells turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3534
2499 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria

Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar

Abstract:

Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.

Keywords: Biocapacity, carbon footprint, ecological footprint assessment, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
2498 The Influence of using Compost Leachate on Soil Reaction

Authors: Ali Gholami, Shahram Ahmadi

Abstract:

In the area where the high quality water is not available, unconventional water sources are used to irrigate. Household leachate is one of the sources which are used in dry and semi dry areas in order to water the barer trees and plants. It meets the plants needs and also has some effects on the soil, but at the same time it might cause some problems as well. This study in order to evaluate the effect of using Compost leachate on the density of soil iron in form of a statistical pattern called ''Split Plot'' by using two main treatments, one subsidiary treatment and three repetitions of the pattern in a three month period. The main N treatments include: irrigation using well water as a blank treatments and the main I treatments include: irrigation using leachate and well water concurrently. Some subsidiary treatments were DI (Drop Irrigation) and SDI (Sub Drop Irrigation). Then in the established plots, 36 biannual pine and cypress shrubs were randomly grown. Two months later the treatment begins. The results revealed that there was a significant variation between the main treatment and the instance regarding pH decline in the soil which was related to the amount of leachate injected into the soil. After some time and using leachate the pH level fell, as much as 0.46 and also increased due to the great amounts of leachate. The underneath drop irrigation ends in better results than sub drop irrigation since it keeps the soil texture fixed.

Keywords: Compost Leachate, Drop irrigation, Soil Reaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
2497 Growth Behaviors, Thermostable Direct Hemolysin Secretion and Fatty Acid Profiles of Acid-adapted and Non-adapted Vibrio parahaemolyticus

Authors: Ming-Lun Chiang, Chieh Wu, Ming-Ju Chen

Abstract:

Three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) implicated in food poisoning outbreaks in Taiwan were subjected to acid adaptation at pH 5.5 for 90 min. The growth behaviors of acid-adapted and non-adapted V. parahaemolyticus in the media supplemented with various nitrogen and carbon sources were investigated. The effects of acid adaptation on the thermostable direct hemolysin (TDH) secretion and fatty acid profiles of V. parahaemolyticus were also examined. Results showed that acid-adapted and non-adapted V. parahaemolyticus 690, BCRC 13023 and BCRC 13025 grew similarly in TSB-3% NaCl and basal media supplemented with various carbon and nitrogen sources during incubation period. Higher TDH secretion was noted with V. parahaemolyticus 690 among the three strains. However, acid-adapted strains produced less amounts of TDH than non-adapted strains when they were grown in TSB-3% NaCl. Additionally, acid adaptation increased the ratio of SFA/USFA in cells of V. parahaemolyticus strains.

Keywords: Vibrio parahaemolyticus, acid adaptation, thermostable direct hemolysin, fatty acid profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
2496 Improvement of Energy Efficiency using Porous Fins in Heat Exchangers

Authors: Hadi Niknami Esfahani , Hossein Shokouhmand, Fahim Faraji

Abstract:

The forced convection heat transfer in high porosity metal-foam filled tube heat exchangers are studied in this paper. The Brinkman Darcy momentum model and two energy equations for both solid and fluid phases in porous media are employed .The study shows that using metal-foams can significantly improve the heat transfer in heat exchangers.

Keywords: Metal foam, Nusselt number, heat exchanger, heat flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
2495 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik

Abstract:

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064
2494 Simulation Tools for Training in the Case of Energy Sector Crisis

Authors: H. Malachova, A. Oulehlova, D. Rezac

Abstract:

Crisis preparedness training is the best possible strategy for identifying weak points, understanding vulnerability, and finding possible strategies for mitigation of blackout consequences. Training represents an effective tool for developing abilities and skills to cope with crisis situations. This article builds on the results of the research carried out in the field of preparation, realization, process, and impacts of training on subjects of energy sector critical infrastructure as a part of crisis preparedness. The research has revealed that the subjects of energy sector critical infrastructure have not realized training and therefore are not prepared for the restoration of the energy supply and black start after blackout regardless of the fact that most subjects state blackout and subsequent black start as key dangers. Training, together with mutual communication and processed crisis documentation, represent a basis for successful solutions for dealing with emergency situations. This text presents the suggested model of SIMEX simulator as a tool which supports managing crisis situations, containing training environment. Training models, possibilities of constructive simulation making use of non-aggregated as well as aggregated entities and tools of communication channels of individual simulator nodes have been introduced by the article.

Keywords: Energetic critical infrastructure, preparedness, training, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
2493 On the Efficiency of a Double-Cone Gravitational Motor and Generator

Authors: Barenten Suciu, Akio Miyamura

Abstract:

In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.

Keywords: Truncated double-cone, friction, rolling and sliding, efficiency, gravitational motor and generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
2492 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation

Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril

Abstract:

This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.

Keywords: Cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
2491 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation

Authors: M. Dehestani, M. Ghasemi-Kooch

Abstract:

In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.

Keywords: Dynamic simulation, single walled carbon nanotube, chlorophyll, adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
2490 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range

Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini

Abstract:

This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.

Keywords: Battery, electric vehicles EV, ultra-capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
2489 Energy Aware Adhoc On-demand Multipath Distance Vector Protocol for QoS Routing

Authors: J. Seetaram, P. Satish Kumar

Abstract:

Mobile Adhoc Networks (MANETs) are infrastructure-less, dynamic network of collections of wireless mobile nodes communicating with each other without any centralized authority. A MANET is a mobile device of interconnections through wireless links, forming a dynamic topology. Routing protocols have a big role in data transmission across a network. Routing protocols, two major classifications are unipath and multipath. This study evaluates performance of an on-demand multipath routing protocol named Adhoc On-demand Multipath Distance Vector routing (AOMDV). This study proposes Energy Aware AOMDV (EAAOMDV) an extension of AOMDV which decreases energy consumed on a route.

Keywords: Mobile Adhoc Network (MANET), unipath, multipath, Adhoc On-demand Multipath Distance Vector routing (AOMDV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
2488 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structureborne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using onboard are presented. By conducting a Statistical Energy Analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The conclusion on effective damping treatment in the offshore platform is made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: Statistical energy analysis, damping treatment, noise control, offshore platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
2487 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram

Authors: V Krishnaveni, S Jayaraman, K Ramadoss

Abstract:

The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.

Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154