Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 765

Search results for: probability density function

765 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.

Keywords: Probability, Stochastic, Probability density function, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
764 Unsupervised Feature Selection Using Feature Density Functions

Authors: Mina Alibeigi, Sattar Hashemi, Ali Hamzeh

Abstract:

Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features. In this paper, we propose a new unsupervised feature selection method which will remove redundant features from the original feature space by the use of probability density functions of various features. To show the effectiveness of the proposed method, popular feature selection methods have been implemented and compared. Experimental results on the several datasets derived from UCI repository database, illustrate the effectiveness of our proposed methods in comparison with the other compared methods in terms of both classification accuracy and the number of selected features.

Keywords: Feature, Feature Selection, Filter, Probability Density Function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
763 Carbon Disulfide Production via Hydrogen Sulfide Methane Reformation

Authors: H. Hosseini, M. Javadi, M. Moghiman, M. H. Ghodsi Rad

Abstract:

Carbon disulfide is widely used for the production of viscose rayon, rubber, and other organic materials and it is a feedstock for the synthesis of sulfuric acid. The objective of this paper is to analyze possibilities for efficient production of CS2 from sour natural gas reformation (H2SMR) (2H2S+CH4 =CS2 +4H2) . Also, the effect of H2S to CH4 feed ratio and reaction temperature on carbon disulfide production is investigated numerically in a reforming reactor. The chemical reaction model is based on an assumed Probability Density Function (PDF) parameterized by the mean and variance of mixture fraction and β-PDF shape. The results show that the major factors influencing CS2 production are reactor temperature. The yield of carbon disulfide increases with increasing H2S to CH4 feed gas ratio (H2S/CH4≤4). Also the yield of C(s) increases with increasing temperature until the temperature reaches to 1000°K, and then due to increase of CS2 production and consumption of C(s), yield of C(s) drops with further increase in the temperature. The predicted CH4 and H2S conversion and yield of carbon disulfide are in good agreement with result of Huang and TRaissi.

Keywords: Carbon disulfide, sour natural gas, H2SMR, probability density function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
762 Stochastic Risk Analysis Framework for Building Construction Projects

Authors: Abdulkadir Abu Lawal

Abstract:

The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.

Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
761 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm

Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag

Abstract:

This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.

Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
760 An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory

Authors: R. K. Saxena, Ravi Saxena

Abstract:

In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Keywords: Fox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
759 Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain

Authors: Suman Senapati, Goutam Saha

Abstract:

Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.

Keywords: Speaker Identification, Log Gabor Wavelet, Bayesian Bivariate Estimator, Circularly Symmetric Probability Density Function, SIRP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
758 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: Diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion equation, trends functions, bi-parameters Weibull density function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
757 Probability of Globality

Authors: Eva Eggeling, Dieter W. Fellner, Torsten Ullrich

Abstract:

The objective of global optimization is to find the globally best solution of a model. Nonlinear models are ubiquitous in many applications and their solution often requires a global search approach; i.e. for a function f from a set A ⊂ Rn to the real numbers, an element x0 ∈ A is sought-after, such that ∀ x ∈ A : f(x0) ≤ f(x). Depending on the field of application, the question whether a found solution x0 is not only a local minimum but a global one is very important. This article presents a probabilistic approach to determine the probability of a solution being a global minimum. The approach is independent of the used global search method and only requires a limited, convex parameter domain A as well as a Lipschitz continuous function f whose Lipschitz constant is not needed to be known.

Keywords: global optimization, probability theory, probability of globality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
756 Characteristic Function in Estimation of Probability Distribution Moments

Authors: Vladimir S. Timofeev

Abstract:

In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.

Keywords: Characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
755 Clusterization Probability in 14N Nuclei

Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev

Abstract:

The main aim of the current work is to examine if 14N  is candidate to be clusterized nuclei or not. In order to check this  attendance, we have measured the angular distributions for 14N ion  beam elastically scattered on 12C target nuclei at different low  energies; 17.5, 21, and 24.5MeV which are close to the Coulomb  barrier energy for 14N+12C nuclear system. Study of various transfer  reactions could provide us with useful information about the  attendance of nuclei to be in a composite form (core + valence). The  experimental data were analyzed using two approaches;  Phenomenological (Optical Potential) and semi-microscopic (Double  Folding Potential). The agreement between the experimental data and  the theoretical predictions is fairly good in the whole angular range.

 

Keywords: Deuteron Transfer, Elastic Scattering, Optical Model, Double Folding, Density Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
754 Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering

Authors: Farhad Hadinejad, Hasan Saberi, Saeed Kazem

Abstract:

Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.

Keywords: Grid–based clustering, SVC, Density function, Radial basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
753 Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection

Authors: Serge B. Provost, Min Jiang

Abstract:

The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresponding density estimates is obtained. Additionally, two refinements of the Kronmal-Tarter stopping criterion are proposed for determining the degree of the polynomial adjustment. By way of illustration, the density estimation methodology advocated herein is applied to two data sets.

Keywords: kernel density estimation, orthogonal polynomials, moment-based methodologies, density approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
752 A New Algorithm for Enhanced Robustness of Copyright Mark

Authors: Harsh Vikram Singh, S. P. Singh, Anand Mohan

Abstract:

This paper discusses a new heavy tailed distribution based data hiding into discrete cosine transform (DCT) coefficients of image, which provides statistical security as well as robustness against steganalysis attacks. Unlike other data hiding algorithms, the proposed technique does not introduce much effect in the stegoimage-s DCT coefficient probability plots, thus making the presence of hidden data statistically undetectable. In addition the proposed method does not compromise on hiding capacity. When compared to the generic block DCT based data-hiding scheme, our method found more robust against a variety of image manipulating attacks such as filtering, blurring, JPEG compression etc.

Keywords: Information Security, Robust Steganography, Steganalysis, Pareto Probability Distribution function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
751 Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples

Authors: Abdullah N. Olimat, Ahmad S. Awad, Faisal M. AL-Ghathian

Abstract:

Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m2 is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods.

Keywords: Optical density, specific optical density, transmittance, visibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
750 Probabilities and the Persistence of Memory in a Bingo-like Carnival Game

Authors: M. Glomski, M. Lopes

Abstract:

Seemingly simple probabilities in the m-player game bingo have never been calculated. These probabilities include expected game length and the expected number of winners on a given turn. The difficulty in probabilistic analysis lies in the subtle interdependence among the m-many bingo game cards in play. In this paper, the game i got it!, a bingo variant, is considered. This variation provides enough weakening of the inter-player dependence to allow probabilistic analysis not possible for traditional bingo. The probability of winning in exactly k turns is calculated for a one-player game. Given a game of m-many players, the expected game length and tie probability are calculated. With these calculations, the game-s interesting payout scheme is considered.

Keywords: Conditional probability, games of chance, npersongames, probability theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
749 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation

Authors: Zhichao Zhao, Yi Liu, Shunping Xiao

Abstract:

A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.

Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
748 Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis

Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri

Abstract:

The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.

Keywords: Fuzzification, defuzzification, gaussian function, triangular function, trapezoidal function, s-function, , membership function, residual analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
747 Investigation of Plant Density and Weed Competition in Different Cultivars of Wheat In Khoramabad Region

Authors: Ali Khourgami, Masoud Rafiee, Korous Rahmati, Ghobad Bour

Abstract:

In order to study the effect of plant density and competition of wheat with field bindweed (Convolvulus arvensis) on yield and agronomical properties of wheat(Triticum Sativum) in irrigated conditions, a factorial experiment as the base of complete randomize block design in three replication was conducted at the field of Kamalvand in khoramabad (Lorestan) region of Iran during 2008-2009. Three plant density (Factor A=200, 230 and 260kg/ha) three cultivar (Factor B=Bahar,Pishtaz and Alvand) and weed control (Factor C= control and no control of weeds)were assigned in experiment. Results show that: Plant density had significant effect (statistically) on seed yield, 1000 seed weight, weed density and dry weight of weeds, seed yield and harvest index had been meaningful effect for cultivars. The interaction between plant density and cultivars for weed density, seed yield, thousand seed weight and harvest index were significant. 260 kg/ha (plant density) of wheat had more effect on increasing of seed yield in Bahar cultivar wheat in khoramabad region of Iran.

Keywords: Convolvulus arvensis, plant density, Triticumsativum, weed density, Wheat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
746 Nonlinear Evolution of Electron Density Under High-Energy-Density Conditions

Authors: Shi Chen, Zi Y. Chen, Jian K. Dan, Jian F. Li

Abstract:

Evolution of one-dimensional electron system under high-energy-density (HED) conditions is investigated, using the principle of least-action and variational method. In a single-mode modulation model, the amplitude and spatial wavelength of the modulation are chosen to be general coordinates. Equations of motion are derived by considering energy conservation and force balance. Numerical results show that under HED conditions, electron density modulation could exist. Time dependences of amplitude and wavelength are both positively related to the rate of energy input. Besides, initial loading speed has a significant effect on modulation amplitude, while wavelength relies more on loading duration.

Keywords: Electron density modulation, HED, nonlinearevolution, plasmas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
745 The Statistical Properties of Filtered Signals

Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.

Abstract:

In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.

Keywords: Circular Convolution, linear Convolution, mixture density function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
744 One scheme of Transition Probability Evaluation

Authors: Alexander B. Bichkov, Alla A. Mityureva, Valery V. Smirnov

Abstract:

In present work are considered the scheme of evaluation the transition probability in quantum system. It is based on path integral representation of transition probability amplitude and its evaluation by means of a saddle point method, applied to the part of integration variables. The whole integration process is reduced to initial value problem solutions of Hamilton equations with a random initial phase point. The scheme is related to the semiclassical initial value representation approaches using great number of trajectories. In contrast to them from total set of generated phase paths only one path for each initial coordinate value is selected in Monte Karlo process.

Keywords: Path integral, saddle point method, semiclassical approximation, transition probability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
743 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.

Keywords: Karkheh river, log pearson type III, probability distribution, residual sum of squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
742 Non-equilibrium Statistical Mechanics of a Driven Lattice Gas Model: Probability Function, FDT-violation, and Monte Carlo Simulations

Authors: K. Sudprasert, M. Precharattana, N. Nuttavut, D. Triampo, B. Pattanasiri, Y. Lenbury, W. Triampo

Abstract:

The study of non-equilibrium systems has attracted increasing interest in recent years, mainly due to the lack of theoretical frameworks, unlike their equilibrium counterparts. Studying the steady state and/or simple systems is thus one of the main interests. Hence in this work we have focused our attention on the driven lattice gas model (DLG model) consisting of interacting particles subject to an external field E. The dynamics of the system are given by hopping of particles to nearby empty sites with rates biased for jumps in the direction of E. Having used small two dimensional systems of DLG model, the stochastic properties at nonequilibrium steady state were analytically studied. To understand the non-equilibrium phenomena, we have applied the analytic approach via master equation to calculate probability function and analyze violation of detailed balance in term of the fluctuation-dissipation theorem. Monte Carlo simulations have been performed to validate the analytic results.

Keywords: Non-equilibrium, lattice gas, stochastic process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
741 Probability and Instruction Effects in Syllogistic Conditional Reasoning

Authors: Olimpia Matarazzo, Ivana Baldassarre

Abstract:

The main aim of this study was to examine whether people understand indicative conditionals on the basis of syntactic factors or on the basis of subjective conditional probability. The second aim was to investigate whether the conditional probability of q given p depends on the antecedent and consequent sizes or derives from inductive processes leading to establish a link of plausible cooccurrence between events semantically or experientially associated. These competing hypotheses have been tested through a 3 x 2 x 2 x 2 mixed design involving the manipulation of four variables: type of instructions (“Consider the following statement to be true", “Read the following statement" and condition with no conditional statement); antecedent size (high/low); consequent size (high/low); statement probability (high/low). The first variable was between-subjects, the others were within-subjects. The inferences investigated were Modus Ponens and Modus Tollens. Ninety undergraduates of the Second University of Naples, without any prior knowledge of logic or conditional reasoning, participated in this study. Results suggest that people understand conditionals in a syntactic way rather than in a probabilistic way, even though the perception of the conditional probability of q given p is at least partially involved in the conditionals- comprehension. They also showed that, in presence of a conditional syllogism, inferences are not affected by the antecedent or consequent sizes. From a theoretical point of view these findings suggest that it would be inappropriate to abandon the idea that conditionals are naturally understood in a syntactic way for the idea that they are understood in a probabilistic way.

Keywords: Conditionals, conditional probability, conditional syllogism, inferential task.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
740 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error

Authors: Oscar Javier Herrera, Manuel Ángel Camacho

Abstract:

This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors.’ The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.

Keywords: Demand Forecasting, Empirical Distribution, Propagation of Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
739 Mobile Robot Path Planning Utilizing Probability Recursive Function

Authors: Ethar H. Khalil, Bahaa I. Kazem

Abstract:

In this work a software simulation model has been proposed for two driven wheels mobile robot path planning; that can navigate in dynamic environment with static distributed obstacles. The work involves utilizing Bezier curve method in a proposed N order matrix form; for engineering the mobile robot path. The Bezier curve drawbacks in this field have been diagnosed. Two directions: Up and Right function has been proposed; Probability Recursive Function (PRF) to overcome those drawbacks. PRF functionality has been developed through a proposed; obstacle detection function, optimization function which has the capability of prediction the optimum path without comparison between all feasible paths, and N order Bezier curve function that ensures the drawing of the obtained path. The simulation results that have been taken showed; the mobile robot travels successfully from starting point and reaching its goal point. All obstacles that are located in its way have been avoided. This navigation is being done successfully using the proposed PRF techniques.

Keywords: Mobile robot, path planning, Bezier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
738 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: Enhanced ideal gas molecular movement, Kriging, probability-based damage detection, probability of damage existence, surrogate modeling, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
737 Analytical Modeling of Globular Protein-Ferritin in α-Helical Conformation: A White Noise Functional Approach

Authors: Vernie C. Convicto, Henry P. Aringa, Wilson I. Barredo

Abstract:

This study presents a conformational model of the helical structures of globular protein particularly ferritin in the framework of white noise path integral formulation by using Associated Legendre functions, Bessel and convolution of Bessel and trigonometric functions as modulating functions. The model incorporates chirality features of proteins and their helix-turn-helix sequence structural motif.

Keywords: Globular protein, modulating function, white noise, winding probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
736 The Possibility-Probability Relationship for Bloodstream Concentrations of Physiologically Active Substances

Authors: Arkady Bolotin

Abstract:

If a possibility distribution and a probability distribution are describing values x of one and the same system or process x(t), can they relate to each other? Though in general the possibility and probability distributions might be not connected at all, we can assume that in some particular cases there is an association linked them. In the presented paper, we consider distributions of bloodstream concentrations of physiologically active substances and propose that the probability to observe a concentration x of a substance X can be produced from the possibility of the event X = x . The proposed assumptions and resulted theoretical distributions are tested against the data obtained from various panel studies of the bloodstream concentrations of the different physiologically active substances in patients and healthy adults as well.

Keywords: Possibility distributions, possibility-probability relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF