Search results for: platinum supported alumina catalysts.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 628

Search results for: platinum supported alumina catalysts.

628 Propane Dehydrogenation over Pt-Sn Supported on Magnesium Aluminate Material

Authors: Deepa Govindarajan, Debdut Roy

Abstract:

Pt-Sn catalysts have been prepared using magnesium aluminate as a support with two different Mg/Al ratio. The supports/catalysts have been characterized by N2-adsorption, XRD, and temperature programmed desorption of NH3 and thermogravimetry analysis (TGA). The catalysts have been evaluated at 595 0C for the propane dehydrogenation reaction at 0.5 barg pressure using a feed containing pure propane with steam to hydrocarbon ratio of 1 mol/mol and weight hourly space velocity (WHSV) 0.9 h-1. Chlorine quantification studies have been developed using Carbon-Hydrogen-Nitrogen-Sulphur (CHNS) analyzer. The dechlorinated catalyst with higher alumina content showed better performance (38-43% propane conversion, 91-94% propylene selectivity) in propane conversion and propylene selectivity than Pt-Sn-MG-AL-DC-1 (30-18% propane conversion, 83-90% propylene selectivity).

Keywords: Dehydrogenation, alumina, platinum-tin catalyst, dechlorination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
627 Deactivation of Cu - Cr/γ-alumina Catalysts for Combustion of Exhaust Gases

Authors: Krasimir Ivanov, Dimitar Dimitrov, Boyan Boyanov

Abstract:

The paper relates to a catalyst, comprising copperchromium spinel, coated on carrier γ-Al2O3. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. It was found that the activity of carbon monoxide, DME, formaldehyde and methanol oxidation reaches a maximum at an active component content of 20 – 30 wt. %. Temperature calcination at 500oC seems to be optimal for the γ– alumina supported CuO-Cr2O3 catalysts for CO, DME, formaldehyde and methanol oxidation. A three months industrial experiment was carried out to elucidate the changes in the catalyst composition during industrial exploitation of the catalyst and the main reasons for catalyst deactivation. It was concluded that the CuO–Cr2O3/γ–alumina supported catalysts have enhanced activity toward CO, DME, formaldehyde and methanol oxidation and that these catalysts are suitable for industrial application. The main reason for catalyst deactivation seems to be the deposition of iron and molybdenum, coming from the main reactor, on the active component surface.

Keywords: catalyst deactivation, CuO-Cr2O3 catalysts, deep oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4448
626 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova

Abstract:

In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why the most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best coppermanganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in two stage continuous flow equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions closest possible to the industrial. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area & pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu- Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.

Keywords: Supported copper-manganese catalysts, CO and VOCs oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351
625 Hydrogenation of Acetic Acid on Alumina-Supported Pt-Sn Catalysts

Authors: Ke Zhang, Fang Li, Haitao Zhang, Hongfang Ma, Weiyong Ying, Dingye Fang

Abstract:

Three alumina-supported Pt-Sn catalysts have been prepared by means of co-impregnation and characterized by XRD and N2 adsorption. The influence of catalyst composition and reaction conditions on the conversion and selectivity were investigated in the hydrogenation of acetic acid in an isothermal integral fixed bed reactor. The experiments were performed on the temperature interval 468-548 K, liquid hourly space velocity (LHSV) of 0.3-0.7h-1, pressures between 1.0 and 5.0Mpa. A good compromise of 0.75%Pt-1.5%Sn can act as an optimized acetic acid hydrogenation catalyst, and the conversion and selectivity can be tuned through the variation of reaction conditions.

Keywords: Acetic acid, hydrogenation, Pt-Sn catalysts, ethanol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116
624 Volatile Organic Compounds Destruction by Catalytic Oxidation for Environmental Applications

Authors: Mohammed Nasir Kajama, Ngozi Claribelle Nwogu, Edward Gobina

Abstract:

Pt/γ-Al2O3 membrane catalysts were prepared via an evaporative-crystallization deposition method. The obtained Pt/γ- Al2O3 catalyst activity was tested after characterization (SEM-EDAX observation, BET measurement, permeability assessment) in the catalytic oxidation of selected volatile organic compound (VOC) i.e. propane, fed in mixture of oxygen. The VOC conversion (nearly 90%) obtained by varying the operating temperature showed that flow-through membrane reactor might do better in the abatement of VOCs.

Keywords: VOC combustion, flow-through membrane reactor, platinum supported alumina catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
623 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Supported copper-manganese-lanthanum catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
622 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs Oxidation

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Ts. Petrova, Tatyana T. Tabakova

Abstract:

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Keywords: Copper-manganese-chromium oxide catalysts, CO, deep oxidation, volatile organic compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
621 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov

Abstract:

The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ- Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME.

Keywords: Copper-manganese catalysts, Preparation methods, Exhaust gases oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
620 Ozone Assisted Low Temperature Catalytic Benzene Oxidation over Al2O3, SiO2, AlOOH Supported Ni/Pd Catalytic

Authors: V. Georgiev

Abstract:

Catalytic oxidation of benzene assisted by ozone, on alumina, silica, and boehmite-supported Ni/Pd catalysts was investigated at 353 K to assess the influence of the support on the reaction. Three bimetallic Ni/Pd nanosized samples with loading 4.7% of Ni and 0.17% of Pd supported on SiO2, AlOOH and Al2O3 were synthesized by the extractive-pyrolytic method. The phase composition was characterized by means of XRD and the surface area and pore size were estimated using Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods. At the beginning of the reaction, catalysts were significantly deactivated due to the accumulation of intermediates on the catalyst surface and after 60 minutes it turned stable. Ni/Pd/AlOOH catalyst showed the highest steady-state activity in comparison with the Ni/Pd/SiO2 and Ni/Pd/Al2O3 catalysts. Their activity depends on the ozone decomposition potential of the catalysts because of generating oxidizing active species. The sample with the highest ozone decomposition ability which correlated to the surface area of the support oxidizes benzene to the highest extent.

Keywords: Ozone, catalysts, oxidation, Volatile organic compounds, VOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
619 Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts

Authors: T. Maruyama, T. Saida, S. Naritsuka, S. Iijima

Abstract:

Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth.

Keywords: Carbon nanotube, chemical vapor deposition, catalyst, Pt, Rh, Pd.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
618 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation

Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev

Abstract:

The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.

Keywords: CO and VOCs oxidation, copper oxide, ceria, gold catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
617 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Keywords: Acetic acid, hydrogenation, PtSn, operating condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
616 Nano-Alumina Sulfuric Acid: An Efficient Catalyst for the Synthesis of α-Aminonitriles Derivatives

Authors: Abbas Teimouri, Alireza Najafi Chermahini, Leila Ghorbanian

Abstract:

An efficient and green protocol for the synthesis of α- aminonitriles derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanides has been developed using natural alumina, alumina sulfuric acid (ASA), nano-γ-alumina, nanoalumina sulfuric acid (nano-ASA) under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.

Keywords: Nano-γ-alumina, nano-alumina sulfuric acid, green synthesis, microwave irradiation, α-aminonitriles derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5000
615 HDS: Alumina- Boria Supported Catalysts

Authors: Peyman Moradi, Matin Parvari

Abstract:

Hydrodesulfurization (HDS) of dibenzothiophene (DBT) in a high pressure batch reactor was done at 320 °C on CoMoS/Al2O3-B2O3 (4, 10, and 16 wt. % of Boria) using nhexadecane as solvent, dimethyldisulfide (DMDS) in tetradecane as sulfur agent, and stirring at 1000 rpm. The effects of boria were investigated by using X-ray diffraction (XRD), Temperature programmed desorption (TPD) of ammonia, and Brunauer-Emmet- Teller (BET) experiments. The results showed that the catalyst prepared with low boria content (4 wt. %) had HDS activity (in pseudo first order kinetic constant basis) value ~1.45 times higher to that of CoMoS/Al2O3 catalyst.

Keywords: Alumina-boria mixed oxides, dibenzothiophene, hydrodesulfurization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
614 Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition

Authors: Katya Milenova, Penko Nikolov, Irina Stambolova, Plamen Nikolov, Vladimir Blaskov

Abstract:

In this article a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes- in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity.

Keywords: Activated carbon, adsorption, copper, ozone decomposition, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
613 Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst

Authors: N. Hataivichian, K. Suriye, S. Kunjara Na Ayudhya, P. Praserthdam, S. Phatanasri

Abstract:

The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500°C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, COchemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal.

Keywords: Alumina, dehydrogenation, platinum, transition metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
612 Global and Local Structure of Supported Pd Catalysts

Authors: V. Rednic, N. Aldea, P. Marginean, D. Macovei, C. M. Teodorescu, E. Dorolti, F. Matei

Abstract:

The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.

Keywords: metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorption spectroscopy, X-raydiffraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
611 Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD,XAS and XPS methods

Authors: N. Aldea, V. Rednic, F. Matei, Tiandou Hu, M. Neumann

Abstract:

The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). XPS investigations confirm the metal-support interaction at their interface.

Keywords: local and global structure, metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorptionspectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
610 Microkinetic Modelling of NO Reduction on Pt Catalysts

Authors: Vishnu S. Prasad, Preeti Aghalayam

Abstract:

The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N2O is detected in some ranges of operating conditions, whereas the effect of inlet O2% causes a number of changes in the feasible regimes of operation.

Keywords: Microkinetic modelling, NOx, Pt on alumina catalysts, selective catalytic reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
609 A Study of the Variables in the Optimisation of a Platinum Precipitation Process

Authors: Tebogo Phetla, Edison Muzenda, M Belaid

Abstract:

This study investigated possible ways to improve the efficiency of the platinum precipitation process using ammonium chloride by reducing the platinum content reporting to the effluent. The ore treated consist of five platinum group metals namely, ruthenium, rhodium, iridium, platinum, palladium and a precious metal gold. Gold, ruthenium, rhodium and iridium were extracted prior the platinum precipitation process. Temperature, reducing agent, flow rate and potential difference were the variables controlled to determine the operation conditions for optimum platinum precipitation efficiency. Hydrogen peroxide was added as the oxidizing agent at the temperature of 85-90oC and potential difference of 700-850mV was the variable used to check the oxidizing state of platinum. The platinum was further purified at temperature between 60-65oC, potential difference above 700 mV, ammonium chloride of 200 l, and at these conditions the platinum content reporting to the effluent was reduced to less than 300ppm, resulting in optimum platinum precipitation efficiency and purity of 99.9%.

Keywords: Platinum Group Metals (PGM), Potential difference, Precipitation, Redox reactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4740
608 The Performance of PtSn/Al₂O₃ with Cylindrical Particles for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported PtSn catalysts with cylindrical particles were prepared and characterized by using low temperature N2 adsorption/desorption and X-ray diffraction. Low temperature N2 adsorption/desorption demonstrate that the tableting changed the texture properties of catalysts. XRD pattern indicate that the crystal structure of supports had no change after reaction. The performances over particles of PtSn/Al2O3 catalysts were investigated with regards to reaction temperature, pressure, and H2/AcOH mole ratio. After tableting, the conversion of acetic acid and selectivity of ethanol and acetyl acetate decreased. High reaction temperature and pressure can improve conversion of acetic acid. H2/AcOH mole ratio of 9.36 showed the best performance on acetic acid hydrogenation. High pressure had benefits for the selectivity of ethanol and other two parameters had no obvious effect on selectivity.  

Keywords: Acetic acid hydrogenation, ethanol, PtSn, cylindrical particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
607 Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance

Authors: Jian Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Cobalt catalysts were supported on extruded silica carrier and different-type (SiO2, γ-Al2O3) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N2 physisorption and H2-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C5+ products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons.

Keywords: Fischer-Tropsch synthesis, cobalt catalyst, support shape, heavy hydrocarbons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
606 Esterification of Free Fatty Acids in Crude Palm Oil Using Alumina-Doped Sulfated Tin Oxide as a Catalyst

Authors: Worawoot Prasitturattanachai, Kamchai Nuithitikul

Abstract:

The conventional production of biodiesel from crude palm oil which contains large amounts of free fatty acids in the presence of a homogeneous base catalyst confronts the problems of soap formation and very low yield of biodiesel. To overcome these problems, free fatty acids must be esterified to their esters in the presence of an acid catalyst prior to alkaline-catalyzed transesterification. Sulfated metal oxides are a promising group of catalysts due to their very high acidity. In this research, aluminadoped sulfated tin oxide (SO4 2-/Al2O3-SnO2) catalysts were prepared and used for esterification of free fatty acids in crude palm oil in a batch reactor. The SO4 2-/Al2O3-SnO2 catalysts were prepared from different Al precursors. The results showed that different Al precursors gave different activities of the SO4 2-/Al2O3-SnO2 catalysts. The esterification of free fatty acids in crude palm oil with methanol in the presence of SO4 2-/Al2O3-SnO2 catalysts followed first-order kinetics.

Keywords: Methyl ester, Biodiesel, Esterification, Sulfated tin oxide, Fatty acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
605 Preparation and Characterization of Polyaniline (PANI)-Platinum Nanocomposite

Authors: Kumar Neeraj, Ranjan Haldar

Abstract:

Polyaniline is an indispensible component in lightemitting devices (LEDs), televisions, cellular telephones, automotive, corrosion-resistant coatings, actuators etc. The electrical conductivity properties was found be increased by introduction of metal nano particles. In the present study, an attempt has been made to utilize platinum nano particles to achieve the improved electrical properties. Polyaniline and Pt-polyaniline composite are synthesized by electrochemical routes. X-ray diffractometer confirms the amorphous nature of polyaniline. The Bragg’s diffraction peaks correspond to platinum nanoparticles in Pt-polyaniline composite and thermogravimetric analyzer indicates its decomposition at certain temperature. The Scanning Electron Micrographs of colloidal platinum nanoparticles were spherical, uniform shape in the composite. The current-voltage (I-V) characteristics of the PANI and composites were also studied which indicate a significant decreasing resistivity than PANI-Platinum after introduction of pt nanoparticles in the matrix of polyaniline (PANI).

Keywords: Polyaniline, XRD and Platinum Nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
604 A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis

Authors: Olga Tkacheva, Pavel Arkhipov, Alexey Rudenko, Yurii Zaikov

Abstract:

The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).

Keywords: Alumina, alumina distribution, aluminum electrolyzer, cryolite-alumina electrolyte, side ledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
603 Hydrogen Generation by Accelerating Aluminum Corrosion in Water with Alumina

Authors: J. Skrovan, A. Alfantazi, T. Troczynski

Abstract:

For relatively small particles of aluminum (<60 μm), a measurable percentage of the aluminum (>5%) is observed to corrode before passivation occurs at moderate temperatures (>50oC) in de-ionized water within one hour. Physical contact with alumina powder results in a significant increase in both the rate of corrosion and the extent of corrosion before passivation. Whereas the resulting release of hydrogen gas could be of commercial interest for portable hydrogen supply systems, the fundamental aspects of Al corrosion acceleration in presence of dispersed alumina particles are equally important. This paper investigates the effects of various amounts of alumina on the corrosion rate of aluminum powders in water and the effect of multiple additions of aluminum into a single reactor.

Keywords: Alumina, Aluminum, Corrosion, Hydrogen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934
602 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars

Authors: Krzysztof Zieliński, Dariusz Kierzek

Abstract:

The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.

Keywords: Alumina cement, immediate setting, compression strength, adhesion to substrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
601 Preparation and Evaluation of New Nanocatalysts for Selective Oxidation of H2S to Sulfur

Authors: Mohammad Rezaee, Mohammad Kazemeini, Ali Morad Rashidi, Moslem Fattahi

Abstract:

Selective oxidation of H2S to elemental sulfur in a fixed bed reactor over newly synthesized alumina nanocatalysts was physio-chemically investigated and results compared with a commercial Claus catalyst. Amongst these new materials, Al2O3- supported sodium oxide prepared with wet chemical technique and Al2O3 nanocatalyst prepared with spray pyrolysis method were the most active catalysts for selective oxidation of H2S to elemental sulfur. Other prepared nanocatalysts were quickly deactivated, mainly due to the interaction with H2S and conversion into sulfides.

Keywords: H2S, Claus process, Al2O3, Spray pyrolysis method, Wet chemical technique

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
600 Preparation of Homogeneous Dense Composite of Zirconia and Alumina (ZTA)using Colloidal Filtration

Authors: H. Wakily, M. Mehrali, H. S. C. Metselaar

Abstract:

Homogeneous composites of alumina and zirconia with a small amount of MgO (<1 wt %) were prepared by colloidal filtration. The object of using ZrO2 (15wt %) was to provide zirconia toughened alumina (ZTA). Suspensions of alumina and Zirconia with various solid loadings and various concentrations of Dolapix CE64 as surfactant were studied. The stability of these suspensions was investigated using rheological measurements. The optimum amount of using Dolapix was 0.8wt% for ZTA containing MgO suspension which gave low apparent viscosity in basic area (100 mPa s at shear rate of 50 s-1). The satisfactory mixtures were made into sample pallets using colloidal filtration. The process was completed with pressureless sintering in suitable temperature. Phase, grain size and qualitative compositional analysis were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM) images. ZTA containing 0.05 wt% MgO shows the lowest grain size for alumina around 0.5 μm. Densification studies show that near full densities (>99%) were obtained for ZTA ceramic containing 0.05 wt% MgO in 1500 °C.

Keywords: Colloidal filtration, Dolapix, MgO, Zirconiatoughened alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2940
599 Synthesis of Novel Nanostructured Catalysts for Pyrolysis of Biomass

Authors: Phuong T. Dang, Hy G. Le, Giang T. Pham, Hong T. M. Vu, Kien T, Nguyen, Canh D. Dao, Giang H. Le, Hoa T. K. Tran, Quang K. Nguyen, Tuan A. Vu

Abstract:

Nanostructured catalysts were successfully prepared by acidification of diatomite and regeneration of FCC spent catalysts. The obtained samples were characterized by IR, XRD, SEM, EDX, MAS-NMR (27Al and 29Si), NH3-TPD and tested in catalytic pyrolysis of biomass (rice straw). The results showed that the similar bio-oil yield of 41.4% can be obtained by pyrolysis with catalysts at 450oC as compared to that of the pyrolysis without catalyst at 550oC. The bio-oil yield reached a maximum of 42.55% at the pyrolysis temperature of 500oC with catalytic content of 20%. Moreover, by catalytic pyrolysis, bio-oil quality was better as reflected in higher ratio of H/C, lower ratio of O/C. This clearly indicated high application potential of these new nanostructured catalysts in the production of bio-oil with low oxygenated compounds.

Keywords: Acidified diatomite, biomass, catalytic pyrolysis, bio-oil, nanostructured catalysts, regenerated FCC catalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575