Search results for: ocean wave
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 602

Search results for: ocean wave

362 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
361 Tsunami Inundation Modeling in a Boundary Fitted Curvilinear Grid Model Using the Method of Lines Technique

Authors: M. Ashaque Meah, M. Shah Noor, M Asif Arefin, Md. Fazlul Karim

Abstract:

A numerical technique in a boundary-fitted curvilinear grid model is developed to simulate the extent of inland inundation along the coastal belts of Peninsular Malaysia and Southern Thailand due to 2004 Indian ocean tsunami. Tsunami propagation and run-up are also studied in this paper. The vertically integrated shallow water equations are solved by using the method of lines (MOL). For this purpose the boundary-fitted grids are generated along the coastal and island boundaries and the other open boundaries of the model domain. A transformation is used to the governing equations so that the transformed physical domain is converted into a rectangular one. The MOL technique is applied to the transformed shallow water equations and the boundary conditions so that the equations are converted into ordinary differential equations initial value problem. Finally the 4th order Runge-Kutta method is used to solve these ordinary differential equations. The moving boundary technique is applied instead of fixed sea side wall or fixed coastal boundary to ensure the movement of the coastal boundary. The extent of intrusion of water and associated tsunami propagation are simulated for the 2004 Indian Ocean tsunami along the west coast of Peninsular Malaysia and southern Thailand. The simulated results are compared with the results obtained from a finite difference model and the data available in the USGS website. All simulations show better approximation than earlier research and also show excellent agreement with the observed data.

Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
360 H-Infinity and RST Position Controllers of Rotary Traveling Wave Ultrasonic Motor

Authors: M. Brahim, I. Bahri, Y. Bernard

Abstract:

Traveling Wave Ultrasonic Motor (TWUM) is a compact, precise, and silent actuator generating high torque at low speed without gears. Moreover, the TWUM has a high holding torque without supply, which makes this motor as an attractive solution for holding position of robotic arms. However, their nonlinear dynamics, and the presence of load-dependent dead zones often limit their use. Those issues can be overcome in closed loop with effective and precise controllers. In this paper, robust H-infinity (H∞) and discrete time RST position controllers are presented. The H∞ controller is designed in continuous time with additional weighting filters to ensure the robustness in the case of uncertain motor model and external disturbances. Robust RST controller based on the pole placement method is also designed and compared to the H∞. Simulink model of TWUM is used to validate the stability and the robustness of the two proposed controllers.

Keywords: Piezoelectric motors, position control, H∞, RST, stability criteria, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
359 An Investigation into Turbine Blade Tip Leakage Flows at High Speeds

Authors: Z. Saleh, E. J. Avital, T. Korakianitis

Abstract:

The effect of the blade tip geometry of a high pressure gas turbine is studied experimentally and computationally for high speed leakage flows. For this purpose two simplified models are constructed, one models a flat tip of the blade and the second models a cavity tip of the blade. Experimental results are obtained from a transonic wind tunnel to show the static pressure distribution along the tip wall and provide flow visualization. RANS computations were carried to provide further insight into the mean flow behavior and to calculate the discharge coefficient which is a measure of the flow leaking over the tip. It is shown that in both geometries of tip the flow separates over the tip to form a separation bubble. The bubble is higher for the cavity tip while a complete shock wave system of oblique waves ending with a normal wave can be seen for the flat tip. The discharge coefficient for the flat tip shows less dependence on the pressure ratio over the blade tip than the cavity tip. However, the discharge coefficient for the cavity tip is lower than that of the flat tip, showing a better ability to reduce the leakage flow and thus increase the turbine efficiency.

Keywords: Gas turbine, blade tip leakage flow, transonic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
358 Measurement of UHF Signal Strength Propagating from Road Surface with Vehicle Obstruction

Authors: C. Thongsopa, P. Sukphongchirakul, A. Intarapanich, P. Jarataku

Abstract:

Radio wave propagation on the road surface is a major problem on wireless sensor network for traffic monitoring. In this paper, we compare receiving signal strength on two scenarios 1) an empty road and 2) a road with a vehicle. We investigate the effect of antenna polarization and antenna height to the receiving signal strength. The transmitting antenna is installed on the road surface. The receiving signal is measured 360 degrees around the transmitting antenna with the radius of 2.5 meters. Measurement results show the receiving signal fluctuation around the transmitting antenna in both scenarios. Receiving signal with vertical polarization antenna results in higher signal strength than horizontal polarization antenna. The optimum antenna elevation is 1 meter for both horizon and vertical polarizations with the vehicle on the road. In the empty road, the receiving signal level is unvarying with the elevation when the elevation is greater than 1.5 meters.

Keywords: Wave propagation, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
357 The Relationship between Fluctuation of Biological Signal: Finger Plethysmogram in Conversation and Anthropophobic Tendency

Authors: Haruo Okabayashi

Abstract:

Human biological signals (pulse wave and brain wave, etc.) have a rhythm which shows fluctuations. This study investigates the relationship between fluctuations of biological signals which are shown by a finger plethysmogram (i.e., finger pulse wave) in conversation and anthropophobic tendency, and identifies whether the fluctuation could be an index of mental health. 32 college students participated in the experiment. The finger plethysmogram of each subject was measured in the following conversation situations: Fun memory talking/listening situation and regrettable memory talking/ listening situation for three minutes each. Lyspect 3.5 was used to collect the data of the finger plethysmogram. Since Lyspect calculates the Lyapunov spectrum, it is possible to obtain the largest Lyapunov exponent (LLE). LLE is an indicator of the fluctuation and shows the degree to which a measure is going away from close proximity to the track in a dynamical system. Before the finger plethysmogram experiment, each participant took the psychological test questionnaire “Anthropophobic Scale.” The scale measures the social phobia trend close to the consciousness of social phobia. It is revealed that there is a remarkable relationship between the fluctuation of the finger plethysmography and anthropophobic tendency scale in talking about a regrettable story in conversation: The participants (N=15) who have a low anthropophobic tendency show significantly more fluctuation of finger pulse waves than the participants (N=17) who have a high anthropophobic tendency (F (1, 31) =5.66, p<0.05). That is, the participants who have a low anthropophobic tendency make conversation flexibly using large fluctuation of biological signal; on the other hand, the participants who have a high anthropophobic tendency constrain a conversation because of small fluctuation. Therefore, fluctuation is not an error but an important drive to make better relationships with others and go towards the development of interaction. In considering mental health, the fluctuation of biological signals would be an important indicator.

Keywords: Anthropophobic tendency, finger plethymogram, fluctuation of biological signal, LLE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
356 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: Dispersion, marine environment, mathematical-statistical relationship, oil spill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
355 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements

Authors: Rawad Asfour, Salam Khamas, Edward A. Ball

Abstract:

This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28 GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e. 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, radiation efficiency of 97% can also be achieved based on the proposed design.

Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491
354 Negative Pressure Waves in Hydraulic Systems

Authors: Fuad H. Veliev

Abstract:

Negative pressure phenomenon appears in many thermodynamic, geophysical and biophysical processes in the Nature and technological systems. For more than 100 years of the laboratory researches beginning from F. M. Donny’s tests, the great values of negative pressure have been achieved. But this phenomenon has not been practically applied, being only a nice lab toy due to the special demands for the purity and homogeneity of the liquids for its appearance. The possibility of creation of direct wave of negative pressure in real heterogeneous liquid systems was confirmed experimentally under the certain kinetic and hydraulic conditions. The negative pressure can be considered as the factor of both useful and destroying energies. The new approach to generation of the negative pressure waves in impure, unclean fluids has allowed the creation of principally new energy saving technologies and installations to increase the effectiveness and efficiency of different production processes. It was proved that the negative pressure is one of the main factors causing hard troubles in some technological and natural processes. Received results emphasize the necessity to take into account the role of the negative pressure as an energy factor in evaluation of many transient thermohydrodynamic processes in the Nature and production systems.

Keywords: Liquid systems, negative pressure, temperature, wave, metastable state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
353 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference  spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signalis is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Keywords: GLRT, Neumann-Pearson’s criterion, test-statistics, degradation, spatial processing, multielement antenna array

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
352 Investigation of Utilizing L-Band Horn Antenna in Landmine Detection

Authors: Ahmad H. Abdelgwad, Ahmed A. Nashat

Abstract:

Landmine detection is an important and yet challenging problem remains to be solved. Ground Penetrating Radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. The detection methodology of GPR depends mainly on the contrast of the dielectric properties of the searched target and its surrounding soil. This contrast produces a partial reflection of the electromagnetic pulses that are being transmitted into the soil and then being collected by the GPR.  One of the most critical hardware components for the performance of GPR is the antenna system. The current paper explores the design and simulation of a pyramidal horn antenna operating at L-band frequencies (1- 2 GHz) to detect a landmine. A prototype model of the GPR system setup is developed to simulate full wave analysis of the electromagnetic fields in different soil types. The contrast in the dielectric permittivity of the landmine and the sandy soil is the most important parameter to be considered for detecting the presence of landmine. L-band horn antenna is proved to be well-versed in the investigation of landmine detection.

Keywords: Full wave analysis, ground penetrating radar, horn antenna design, landmine detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
351 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: Computational fluid dynamics, shock wave, unsteady jet, vortex ring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
350 A Comparative Study on Optimized Bias Current Density Performance of Cubic ZnB-GaN with Hexagonal 4H-SiC Based Impatts

Authors: Arnab Majumdar, Srimani Sen

Abstract:

In this paper, a vivid simulated study has been made on 35 GHz Ka-band window frequency in order to judge and compare the DC and high frequency properties of cubic ZnB-GaN with the existing hexagonal 4H-SiC. A flat profile p+pnn+ DDR structure of impatt is chosen and is optimized at a particular bias current density with respect to efficiency and output power taking into consideration the effect of mobile space charge also. The simulated results obtained reveals the strong potentiality of impatts based on both cubic ZnB-GaN and hexagonal 4H-SiC. The DC-to-millimeter wave conversion efficiency for cubic ZnB-GaN impatt obtained is 50% with an estimated output power of 2.83 W at an optimized bias current density of 2.5×108 A/m2. The conversion efficiency and estimated output power in case of hexagonal 4H-SiC impatt obtained is 22.34% and 40 W respectively at an optimum bias current density of 0.06×108 A/m2.

Keywords: Cubic ZnB-GaN, hexagonal 4H-SiC, Double drift impatt diode, millimeter wave, optimized bias current density, wide band gap semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
349 Thermoelastic Waves in Anisotropic Platesusing Normal Mode Expansion Method with Thermal Relaxation Time

Authors: K.L. Verma

Abstract:

Analysis for the generalized thermoelastic Lamb waves, which propagates in anisotropic thin plates in generalized thermoelasticity, is presented employing normal mode expansion method. The displacement and temperature fields are expressed by a summation of the symmetric and antisymmetric thermoelastic modes in the surface thermal stresses and thermal gradient free orthotropic plate, therefore the theory is particularly appropriate for waveform analyses of Lamb waves in thin anisotropic plates. The transient waveforms excited by the thermoelastic expansion are analyzed for an orthotropic thin plate. The obtained results show that the theory provides a quantitative analysis to characterize anisotropic thermoelastic stiffness properties of plates by wave detection. Finally numerical calculations have been presented for a NaF crystal, and the dispersion curves for the lowest modes of the symmetric and antisymmetric vibrations are represented graphically at different values of thermal relaxation time. However, the methods can be used for other materials as well

Keywords: Anisotropic, dispersion, frequency, normal, thermoelasticity, wave modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
348 Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems

Authors: Vladimir Veremey

Abstract:

The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H00 mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems.

Keywords: Antenna, antenna arrays, multiple-input-multiple-output, MIMO, millimeter wave bands, slot antenna, flush installation, directivity, open waveguide, conformal antennas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
347 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films

Authors: M. Emami, R. Tarighi, R. Goodarzi

Abstract:

Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.

Keywords: Absorbing, carbon, carbon nickel, frequency, thicknesses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
346 Parallel Algorithm for Numerical Solution of Three-Dimensional Poisson Equation

Authors: Alibek Issakhov

Abstract:

In this paper developed and realized absolutely new algorithm for solving three-dimensional Poisson equation. This equation used in research of turbulent mixing, computational fluid dynamics, atmospheric front, and ocean flows and so on. Moreover in the view of rising productivity of difficult calculation there was applied the most up-to-date and the most effective parallel programming technology - MPI in combination with OpenMP direction, that allows to realize problems with very large data content. Resulted products can be used in solving of important applications and fundamental problems in mathematics and physics.

Keywords: MPI, OpenMP, three dimensional Poisson equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
345 Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film

Authors: Samah G. Babiker, Yong Shuai, Mohamed Osman Sid-Ahmed, Ming Xie, Mu Lei

Abstract:

The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.

Keywords: Coherent thermal emission, Polartons, Reflectance, Resonance frequency, Rigorous coupled wave analysis (RCWA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
344 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels

Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin

Abstract:

Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.

Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3261
343 Influences of Thermal Relaxation Times on Generalized Thermoelastic Longitudinal Waves in Circular Cylinder

Authors: Fatimah A. Alshaikh

Abstract:

This paper is concerned with propagation of thermoelastic longitudinal vibrations of an infinite circular cylinder, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). Three displacement potential functions are introduced to uncouple the equations of motion. The frequency equation, by using the traction free boundary conditions, is given in the form of a determinant involving Bessel functions. The roots of the frequency equation give the value of the characteristic circular frequency as function of the wave number. These roots, which correspond to various modes, are numerically computed and presented graphically for different values of the thermal relaxation times. It is found that the influences of the thermal relaxation times on the amplitudes of the elastic and thermal waves are remarkable. Also, it is shown in this study that the propagation of thermoelastic longitudinal vibrations based on the generalized thermoelasticity can differ significantly compared with the results under the classical formulation. A comparison of the results for the case with no thermal effects shows well agreement with some of the corresponding earlier results.

Keywords: Wave propagation, longitudinal vibrations, circular cylinder, generalized thermoelasticity, Thermal relaxation times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
342 RADAR Imaging to Develop an Enhanced Fog Vision System for Collision Avoidance

Authors: Saswata Chakraborty, R.P.Chatterjee, S. Majumder, Anup Kr. Bhattacharjee

Abstract:

The scattering effect of light in fog improves the difficulty in visibility thus introducing disturbances in transport facilities in urban or industrial areas causing fatal accidents or public harassments, therefore, developing an enhanced fog vision system with radio wave to improvise the way outs of these severe problems is really a big challenge for researchers. Series of experimental studies already been done and more are in progress to know the weather effect on radio frequencies for different ranges. According to Rayleigh scattering Law, the propagating wavelength should be greater than the diameter of the particle present in the penetrating medium. Direct wave RF signal thus have high chance of failure to work in such weather for detection of any object. Therefore an extensive study was required to find suitable region in the RF band that can help us in detecting objects with proper shape. This paper produces some results on object detection using 912 MHz band with successful detection of the persistence of any object coming under the trajectory of a vehicle navigating in indoor and outdoor environment. The developed images are finally transformed to video signal to enable continuous monitoring.

Keywords: RADAR Imaging, Fog vision system, Objectdetection, Jpeg to Mpeg conversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
341 Dynamic Traffic Simulation for Traffic Congestion Problem Using an Enhanced Algorithm

Authors: Wong Poh Lee, Mohd. Azam Osman, Abdullah Zawawi Talib, Ahmad Izani Md. Ismail

Abstract:

Traffic congestion has become a major problem in many countries. One of the main causes of traffic congestion is due to road merges. Vehicles tend to move slower when they reach the merging point. In this paper, an enhanced algorithm for traffic simulation based on the fluid-dynamic algorithm and kinematic wave theory is proposed. The enhanced algorithm is used to study traffic congestion at a road merge. This paper also describes the development of a dynamic traffic simulation tool which is used as a scenario planning and to forecast traffic congestion level in a certain time based on defined parameter values. The tool incorporates the enhanced algorithm as well as the two original algorithms. Output from the three above mentioned algorithms are measured in terms of traffic queue length, travel time and the total number of vehicles passing through the merging point. This paper also suggests an efficient way of reducing traffic congestion at a road merge by analyzing the traffic queue length and travel time.

Keywords: Dynamic, fluid-dynamic, kinematic wave theory, simulation, traffic congestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
340 Analysis of the Black Sea Gas Hydrates

Authors: Sukru Merey, Caglar Sinayuc

Abstract:

Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.

Keywords: Black Sea hydrates, depressurization, turbidites, HydrateResSim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
339 Comprehensive Study on the Linear Hydrodynamic Analysis of a Truss Spar in Random Waves

Authors: Roozbeh Mansouri, Hassan Hadidi

Abstract:

Truss spars are used for oil exploitation in deep and ultra-deep water if storage crude oil is not needed. The linear hydrodynamic analysis of truss spar in random sea wave load is necessary for determining the behaviour of truss spar. This understanding is not only important for design of the mooring lines, but also for optimising the truss spar design. In this paper linear hydrodynamic analysis of truss spar is carried out in frequency domain. The hydrodynamic forces are calculated using the modified Morison equation and diffraction theory. Added mass and drag coefficients of truss section computed by transmission matrix and normal acceleration and velocity component acting on each element and for hull section computed by strip theory. The stiffness properties of the truss spar can be separated into two components; hydrostatic stiffness and mooring line stiffness. Then, platform response amplitudes obtained by solved the equation of motion. This equation is non-linear due to viscous damping term therefore linearised by iteration method [1]. Finally computed RAOs and significant response amplitude and results are compared with experimental data.

Keywords: Truss Spar, Hydrodynamic analysis, Wave spectrum, Frequency Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
338 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm2 are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm2). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: Focused ultrasound therapy, Histotripsy, generation of inertial cavitation, mechanical tissue ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
337 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation

Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta

Abstract:

Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.

Keywords: Channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, Lévy flight distribution, optimization, improved multi–objective Firefly algorithms, Pareto optimal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
336 Effects of Double Delta Doping on Millimeter and Sub-millimeter Wave Response of Two-Dimensional Hot Electrons in GaAs Nanostructures

Authors: N. Basanta Singh, Sanjoy Deb, G. P Mishra, Subir Kumar Sarkar

Abstract:

Carrier mobility has become the most important characteristic of high speed low dimensional devices. Due to development of very fast switching semiconductor devices, speed of computer and communication equipment has been increasing day by day and will continue to do so in future. As the response of any device depends on the carrier motion within the devices, extensive studies of carrier mobility in the devices has been established essential for the growth in the field of low dimensional devices. Small-signal ac transport of degenerate two-dimensional hot electrons in GaAs quantum wells is studied here incorporating deformation potential acoustic, polar optic and ionized impurity scattering in the framework of heated drifted Fermi-Dirac carrier distribution. Delta doping is considered in the calculations to investigate the effects of double delta doping on millimeter and submillimeter wave response of two dimensional hot electrons in GaAs nanostructures. The inclusion of delta doping is found to enhance considerably the two dimensional electron density which in turn improves the carrier mobility (both ac and dc) values in the GaAs quantum wells thereby providing scope of getting higher speed devices in future.

Keywords: Carrier mobility, Delta doping, Hot carriers, Quantum wells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
335 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: Transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
334 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations

Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen

Abstract:

Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.

Keywords: Earthquake early warning, Single station approach, Seismometer location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
333 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar

Abstract:

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Keywords: Common rail, hydrogen engine, port injection, wave propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556