Search results for: noise measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1922

Search results for: noise measurement

1742 Novel Sinusoidal Pulse Width Modulation with Least Correlated Noise

Authors: Shiang-Hwua Yu, Han-Sheng Tseng

Abstract:

This paper presents a novel sinusoidal modulation scheme that features least correlated noise and high linearity. The modulation circuit, which is composed of a quantizer, a resonator, and a comparator, is capable of eliminating correlated modulation noise while doing modulation. The proposed modulation scheme combined with the linear quadratic optimal control is applied to a single-phase voltage source inverter and validated with the experiment results. The experiments show that the inverter supplies stable 60Hz 110V AC power with a total harmonic distortion of less than 1%, under the DC input variation from 190 V to 300 V and the output power variation from 0 to 600 W.

Keywords: Pulse width modulation, feedback dithering, linear quadratic control, inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
1741 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

Authors: Yoshio Kurosawa, Takao Yamaguchi

Abstract:

High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.

Keywords: Automobile, acoustics, porous material, Transfer Matrix Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
1740 Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization

Authors: Samad Nejatian, Vahideh Rezaie, Vahid Asadpour

Abstract:

This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.

Keywords: fuzzy system, low noise amplifier, microwaveamplifier, space mapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1739 The Effect of Different Compression Schemes on Speech Signals

Authors: Jalal Karam, Raed Saad

Abstract:

This paper studies the effect of different compression constraints and schemes presented in a new and flexible paradigm to achieve high compression ratios and acceptable signal to noise ratios of Arabic speech signals. Compression parameters are computed for variable frame sizes of a level 5 to 7 Discrete Wavelet Transform (DWT) representation of the signals for different analyzing mother wavelet functions. Results are obtained and compared for Global threshold and level dependent threshold techniques. The results obtained also include comparisons with Signal to Noise Ratios, Peak Signal to Noise Ratios and Normalized Root Mean Square Error.

Keywords: Speech Compression, Wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
1738 Recovering the Clipped OFDM Figurebased on the Conic Function

Authors: Linjun Wu, Shihua Zhu, Xingle Feng

Abstract:

In Orthogonal Frequency Division Multiplexing (OFDM) systems, the peak to average power ratio (PAR) is much high. The clipping signal scheme is a useful method to reduce PAR. Clipping the OFDM signal, however, increases the overall noise level by introducing clipping noise. It is necessary to recover the figure of the original signal at receiver in order to reduce the clipping noise. Considering the continuity of the signal and the figure of the peak, we obtain a certain conic function curve to replace the clipped signal module within the clipping time. The results of simulation show that the proposed scheme can reduce the systems? BER (bit-error rate) 10 times when signal-to-interference-and noise-ratio (SINR) equals to 12dB. And the BER performance of the proposed scheme is superior to that of kim's scheme, too.

Keywords: Orthogonal Frequency Division Multiplexing, Peak-to-Average Power Ratio, clipping time, conic function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
1737 Some Remarkable Properties of a Hopfield Neural Network with Time Delay

Authors: Kelvin Rozier, Vladimir E. Bondarenko

Abstract:

It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another.

Keywords: Chaos, Hopfield neural network, noise, synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1736 Application of Computational Intelligence for Sensor Fault Detection and Isolation

Authors: A. Jabbari, R. Jedermann, W. Lang

Abstract:

The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.

Keywords: Fault detection and Isolation, Neural network, Temperature measurement, measurement approximation and classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
1735 Advanced Stochastic Models for Partially Developed Speckle

Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije

Abstract:

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1734 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: Discrete Wavelet Transform, speech intelligibility, STOI, standard deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 634
1733 A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram

Authors: Ramesh Rajagopalan, Adam Dahlstrom

Abstract:

Noise removal techniques play a vital role in the performance of electrocardiographic (ECG) signal processing systems. ECG signals can be corrupted by various kinds of noise such as baseline wander noise, electromyographic interference, and powerline interference. One of the significant challenges in ECG signal processing is the degradation caused by additive 50 or 60 Hz powerline interference. This work investigates the removal of power line interference and suppression of transient response for filtering noise corrupted ECG signals. We demonstrate the effectiveness of infinite impulse response (IIR) notch filter with time varying pole radius for improving the transient behavior. The temporary change in the pole radius of the filter diminishes the transient behavior. Simulation results show that the proposed IIR filter with time varying pole radius outperforms traditional IIR notch filters in terms of mean square error and transient suppression.

Keywords: Notch filter, ECG, transient, pole radius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3143
1732 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms

Authors: Ching-Fen Jiang

Abstract:

Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.

Keywords: edge detection, ultrasonic images, speckle noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
1731 A Comparison of Real Valued Transforms for Image Compression

Authors: Shivali D. Kulkarni, Ameya K. Naik, Nitin S. Nagori

Abstract:

In this paper we present simulation results for the application of a bandwidth efficient algorithm (mapping algorithm) to an image transmission system. This system considers three different real valued transforms to generate energy compact coefficients. First results are presented for gray scale and color image transmission in the absence of noise. It is seen that the system performs its best when discrete cosine transform is used. Also the performance of the system is dominated more by the size of the transform block rather than the number of coefficients transmitted or the number of bits used to represent each coefficient. Similar results are obtained in the presence of additive white Gaussian noise. The varying values of the bit error rate have very little or no impact on the performance of the algorithm. Optimum results are obtained for the system considering 8x8 transform block and by transmitting 15 coefficients from each block using 8 bits.

Keywords: Additive white Gaussian noise channel, mapping algorithm, peak signal to noise ratio, transform encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1730 Filtering and Reconstruction System for Gray Forensic Images

Authors: Ahd Aljarf, Saad Amin

Abstract:

Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.

Keywords: Image Filtering, Image Reconstruction, Image Processing, Forensic Images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
1729 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
1728 Low Value Capacitance Measurement System with Adjustable Lead Capacitance Compensation

Authors: Gautam Sarkar, Anjan Rakshit, Amitava Chatterjee, Kesab Bhattacharya

Abstract:

The present paper describes the development of a low cost, highly accurate low capacitance measurement system that can be used over a range of 0 – 400 pF with a resolution of 1 pF. The range of capacitance may be easily altered by a simple resistance or capacitance variation of the measurement circuit. This capacitance measurement system uses quad two-input NAND Schmitt trigger circuit CD4093B with hysteresis for the measurement and this system is integrated with PIC 18F2550 microcontroller for data acquisition purpose. The microcontroller interacts with software developed in the PC end through USB architecture and an attractive graphical user interface (GUI) based system is developed in the PC end to provide the user with real time, online display of capacitance under measurement. The system uses a differential mode of capacitance measurement, with reference to a trimmer capacitance, that effectively compensates lead capacitances, a notorious error encountered in usual low capacitance measurements. The hysteresis provided in the Schmitt-trigger circuits enable reliable operation of the system by greatly minimizing the possibility of false triggering because of stray interferences, usually regarded as another source of significant error. The real life testing of the proposed system showed that our measurements could produce highly accurate capacitance measurements, when compared to cutting edge, high end digital capacitance meters.

Keywords: Capacitance measurement, NAND Schmitt trigger, microcontroller, GUI, lead compensation, hysteresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7322
1727 Flexible Sensor Array with Programmable Measurement System

Authors: Jung-Chuan Chou, Wei-Chuan Chen, Chien-Cheng Chen

Abstract:

This study is concerned with pH solution detection using 2 × 4 flexible sensor array based on a plastic polyethylene terephthalate (PET) substrate that is coated a conductive layer and a ruthenium dioxide (RuO2) sensitive membrane with the technologies of screen-printing and RF sputtering. For data analysis, we also prepared a dynamic measurement system for acquiring the response voltage and analyzing the characteristics of the working electrodes (WEs), such as sensitivity and linearity. In this condition, an array measurement system was designed to acquire the original signal from sensor array, and it is based on the method of digital signal processing (DSP). The DSP modifies the unstable acquisition data to a direct current (DC) output using the technique of digital filter. Hence, this sensor array can obtain a satisfactory yield, 62.5%, through the design measurement and analysis system in our laboratory.

Keywords: Flexible sensor array, PET, RuO2, dynamic measurement, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
1726 A Robust Reception of IEEE 802.15.4a IR-TH UWB in Dense Multipath and Gaussian Noise

Authors: Farah Haroon, Haroon Rasheed, Kazi M Ahmed

Abstract:

IEEE 802.15.4a impulse radio-time hopping ultra wide band (IR-TH UWB) physical layer, due to small duty cycle and very short pulse widths is robust against multipath propagation. However, scattering and reflections with the large number of obstacles in indoor channel environments, give rise to dense multipath fading. It imposes serious problem to optimum Rake receiver architectures, for which very large number of fingers are needed. Presence of strong noise also affects the reception of fine pulses having extremely low power spectral density. A robust SRake receiver for IEEE 802.15.4a IRTH UWB in dense multipath and additive white Gaussian noise (AWGN) is proposed to efficiently recover the weak signals with much reduced complexity. It adaptively increases the signal to noise (SNR) by decreasing noise through a recursive least square (RLS) algorithm. For simulation, dense multipath environment of IEEE 802.15.4a industrial non line of sight (NLOS) is employed. The power delay profile (PDF) and the cumulative distribution function (CDF) for the respective channel environment are found. Moreover, the error performance of the proposed architecture is evaluated in comparison with conventional SRake and AWGN correlation receivers. The simulation results indicate a substantial performance improvement with very less number of Rake fingers.

Keywords: Adaptive noise cancellation, dense multipath propoagation, IEEE 802.15.4a, IR-TH UWB, industrial NLOS environment, SRake receiver

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
1725 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques

Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson

Abstract:

Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).

Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1724 Evaluation of the Energy Consumption per Bit inBENES Optical Packet Switch

Authors: V. Eramo, E. Miucci, A. Cianfrani, A. Germoni, M. Listanti

Abstract:

We evaluate the average energy consumption per bit in Optical Packet Switches equipped with BENES switching fabric realized in Semiconductor Optical Amplifier (SOA) technology. We also study the impact that the Amplifier Spontaneous Emission (ASE) noise generated by a transmission system has on the power consumption of the BENES switches due to the gain saturation of the SOAs used to realize the switching fabric. As a matter of example for 32×32 switches supporting 64 wavelengths and offered traffic equal to 0,8, the average energy consumption per bit is 2, 34 · 10-1 nJ/bit and increases if ASE noise introduced by the transmission systems is increased.

Keywords: Benes, Amplifier Spontaneous Emission Noise, EnergyConsumption, Optical Packet Switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
1723 Synchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation

Authors: Changzhao Li, Juan Zhang

Abstract:

In this paper, we investigate a class of fuzzy Cohen- Grossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. Finally, a numerical example is given to show the effectiveness of the results in this paper.

Keywords: Fuzzy Cohen-Grossberg neural networks (FCGNNs), complete synchronization, time delays, impulsive, noise perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
1722 Investigation of Constant Transconductance Circuit for Low Power Low-Noise Amplifier

Authors: Wei Yi Lim, M. Annamalai Arasu, M. Kumarasamy Raja, Minkyu Je

Abstract:

In this paper, the design of wide-swing constant transconductance (gm) bias circuit that generates bias voltage for low-noise amplifier (LNA) circuit design by using an off-chip resistor is demonstrated. The overall transconductance (Gm) generated by the constant gm bias circuit is important to maintain the overall gain and noise figure of the LNA circuit. Therefore, investigation is performed to study the variation in Gm with process, temperature and supply voltage (PVT).  Temperature and supply voltage are swept from -10 °C to 85 °C and 1.425 V to 1.575 V respectively, while the process conditions are also varied to the extreme and the gm variation is eventually concluded at between -3 % to 7 %. With the slight variation in the gm value, through simulation, at worst condition of state SS, we are able to attain a conversion gain (S21) variation of -3.10 % and a noise figure (NF) variation of 18.71 %. The whole constant gm circuit draws approximately 100 µA from a 1.5V supply and is designed based on 0.13 µm CMOS process. 

Keywords: Transconductance, LNA, temperature, process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4078
1721 Evaluation of Power Consumption of Spanke Optical Packet Switch

Authors: V. Eramo, E. Miucci, A. Cianfrani, A. Germoni, M. Listanti

Abstract:

The power consumption of an Optical Packet Switch equipped with SOA technology based Spanke switching fabric is evaluated. Sophisticated analytical models are introduced to evaluate the power consumption versus the offered traffic, the main switch parameters, and the used device characteristics. The impact of Amplifier Spontaneous Emission (ASE) noise generated by a transmission system on the power consumption is investigated. As a matter of example for 32×32 switches supporting 64 wavelengths and offered traffic equal to 0,8, the average energy consumption per bit is 5, 07 · 10-2 nJ/bit and increases if ASE noise introduced by the transmission systems is increased.

Keywords: Spanke, Amplifier Spontaneous Emission Noise, Power Consumption, Optical Packet Switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
1720 Voice Driven Applications in Non-stationary and Chaotic Environment

Authors: C. Kwan, X. Li, D. Lao, Y. Deng, Z. Ren, B. Raj, R. Singh, R. Stern

Abstract:

Automated operations based on voice commands will become more and more important in many applications, including robotics, maintenance operations, etc. However, voice command recognition rates drop quite a lot under non-stationary and chaotic noise environments. In this paper, we tried to significantly improve the speech recognition rates under non-stationary noise environments. First, 298 Navy acronyms have been selected for automatic speech recognition. Data sets were collected under 4 types of noisy environments: factory, buccaneer jet, babble noise in a canteen, and destroyer. Within each noisy environment, 4 levels (5 dB, 15 dB, 25 dB, and clean) of Signal-to-Noise Ratio (SNR) were introduced to corrupt the speech. Second, a new algorithm to estimate speech or no speech regions has been developed, implemented, and evaluated. Third, extensive simulations were carried out. It was found that the combination of the new algorithm, the proper selection of language model and a customized training of the speech recognizer based on clean speech yielded very high recognition rates, which are between 80% and 90% for the four different noisy conditions. Fourth, extensive comparative studies have also been carried out.

Keywords: Non-stationary, speech recognition, voice commands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
1719 Mathematical Modeling of the Working Principle of Gravity Gradient Instrument

Authors: Danni Cong, Meiping Wu, Hua Mu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokun Cai, Hao Qin

Abstract:

Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement.

Keywords: Gravity gradient, accelerometer, gravity gradient sensor, single-axis rotation modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
1718 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing

Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida

Abstract:

This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.

Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
1717 Design and Analysis of an 8T Read Decoupled Dual Port SRAM Cell for Low Power High Speed Applications

Authors: Ankit Mitra

Abstract:

Speed, power consumption and area, are some of the most important factors of concern in modern day memory design. As we move towards Deep Sub-Micron Technologies, the problems of leakage current, noise and cell stability due to physical parameter variation becomes more pronounced. In this paper we have designed an 8T Read Decoupled Dual Port SRAM Cell with Dual Threshold Voltage and characterized it in terms of read and write delay, read and write noise margins, Data Retention Voltage and Leakage Current. Read Decoupling improves the Read Noise Margin and static power dissipation is reduced by using Dual-Vt transistors. The results obtained are compared with existing 6T, 8T, 9T SRAM Cells, which shows the superiority of the proposed design. The Cell is designed and simulated in TSPICE using 90nm CMOS process.

Keywords: CMOS, Dual-Port, Data Retention Voltage, 8T SRAM, Leakage Current, Noise Margin, Loop-cutting, Single-ended.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3368
1716 Adaptive Kernel Filtering Used in Video Processing

Authors: Rasmus Engholm, Eva B. Vedel Jensen, Henrik Karstoft

Abstract:

In this paper we present a noise reduction filter for video processing. It is based on the recently proposed two dimensional steering kernel, extended to three dimensions and further augmented to suit the spatial-temporal domain of video processing. Two alternative filters are proposed - the time symmetric kernel and the time asymmetric kernel. The first reduces the noise on single sequences, but to handle the problems at scene shift the asymmetric kernel is introduced. The performance of both are tested on simulated data and on a real video sequence together with the existing steering kernel. The proposed kernels improves the Rooted Mean Squared Error (RMSE) compared to the original steering kernel method on video material.

Keywords: Adaptive image filtering, noise reduction, kernel methods, video processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
1715 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques

Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah

Abstract:

Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or underestimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improve accuracies. This requires standard measurement methods to be structured in ontological and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.

Keywords: BIM, Construction projects, Cost estimation, NRM, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4378
1714 Evolution of Performance Measurement Methods in Conditions of Uncertainty: The Implementation of Fuzzy Sets in Performance Measurement

Authors: E. A. Tkachenko, E. M. Rogova, V. V. Klimov

Abstract:

One of the basic issues of development management is connected with performance measurement as a prerequisite for identifying the achievement of development objectives. The aim of our research is to develop an improved model of assessing a company’s development results. The model should take into account the cyclical nature of development and the high degree of uncertainty in dealing with numerous management tasks. Our hypotheses may be formulated as follows: Hypothesis 1. The cycle of a company’s development may be studied from the standpoint of a project cycle. To do that, methods and tools of project analysis are to be used. Hypothesis 2. The problem of the uncertainty when justifying managerial decisions within the framework of a company’s development cycle can be solved through the use of the mathematical apparatus of fuzzy logic. The reasoned justification of the validity of the hypotheses made is given in the suggested article. The fuzzy logic toolkit applies to the case of technology shift within an enterprise. It is proven that some restrictions in performance measurement that are incurred to conventional methods could be eliminated by implementation of the fuzzy logic apparatus in performance measurement models.

Keywords: Fuzzy logic, fuzzy sets, performance measurement, project analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
1713 Detection of Bias in GPS satellites- Measurements for Enhanced Measurement Integrity

Authors: Mamoun F. Abdel-Hafez

Abstract:

In this paper, the detection of a fault in the Global Positioning System (GPS) measurement is addressed. The class of faults considered is a bias in the GPS pseudorange measurements. This bias is modeled as an unknown constant. The fault could be the result of a receiver fault or signal fault such as multipath error. A bias bank is constructed based on set of possible fault hypotheses. Initially, there is equal probability of occurrence for any of the biases in the bank. Subsequently, as the measurements are processed, the probability of occurrence for each of the biases is sequentially updated. The fault with a probability approaching unity will be declared as the current fault in the GPS measurement. The residual formed from the GPS and Inertial Measurement Unit (IMU) measurements is used to update the probability of each fault. Results will be presented to show the performance of the presented algorithm.

Keywords: Estimation and filtering, Statistical data analysis, Faultdetection and identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911