Search results for: more electric aircraft
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 812

Search results for: more electric aircraft

602 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting

Authors: I. Falconett, K. Nagasaka

Abstract:

This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.

Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
601 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: Disturbance automation, electric power grid, smart grid, smart switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
600 Investigating what Effects Aviation Fluids Have on the Flatwise Compressive Strength of Nomex® Honeycomb Core Material

Authors: G. Kim, R. Sterkenburg

Abstract:

One of the disadvantages of honeycomb sandwich structure is that they are prone to fluid intrusion. The purpose of this study is to determine if the structural properties of honeycomb core are affected by contact with a fluid. The test specimens were manufactured of fiberglass prepreg for the facesheets and Nomex® honeycomb core for the core material in accordance with ASTM C-365/365M. Test specimens were soaked in several different kinds of fluids, such as aircraft fuel, turbine engine oil, hydraulic fluid, and water for a period of 60 days. A flatwise compressive test was performed, and the test results were analyzed to determine how the contact with aircraft fluids affected the compressive strength of the Nomex® honeycomb core and how the strength was recovered when the specimens were dry. In addition, the investigation of de-bonding between facesheet and core material after soaking were performed to support the study.

Keywords: Debonding, environmental degradation, honeycomb sandwich structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 603
599 FEA-Based Calculation of Performances of IPM Machines with Five Topologies for Hybrid- Electric Vehicle Traction

Authors: Aimeng Wang, Dejun Ma, Hui Wang

Abstract:

The paper presents a detailed calculation of characteristic of five different topology permanent magnet machines for high performance traction including hybrid -electric vehicles using finite element analysis (FEA) method. These machines include V-shape single layer interior PM, W-shape single-layer interior PM, Segment interior PM and surface PM on the rotor and with distributed winding on the stator. The performance characteristics which include the back-emf voltage and its harmonic, magnet mass, iron loss and ripple torque are compared and analyzed. One of a 7.5kW IPM prototype was tested and verified finite-element analysis results. The aim of the paper is given some guidance and reference for machine designer which are interested in IPM machine selection for high performance traction application.

Keywords: Interior permanent magnet machine, finite-element analysis (FEA), five topologies, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3871
598 Electric Field Analysis and Experimental Evaluation of 400 kV Silicone Composite Insulator

Authors: M. Nageswara Rao, N. Sumathi, V. S. N. K. Chaitanya

Abstract:

In electrical power system, high voltage insulators are necessary for consistent performance. All insulators are exposed to different mechanical and electrical stresses. Mechanical stresses occur due to various loads such as wind load, hardware and conductors weight. Electrical stresses are due to over voltages and operating voltages. The performance analysis of polymer insulators is an essential, as most of the electrical utility companies are employing polymer insulators for new and updated transmission lines. In this paper, electric field is analyzed for 400 kV silicone (SiR) composite insulator by COULOMB 3D software based on boundary element method. The field results are compared with EPRI reference values. Our results proved that values at critical regions are very less compared to EPRI reference values. And also experimentally 400 kV single V suspension string is evaluated as per IEC standards.

Keywords: Electric field analysis, silicone composite insulator, boundary element method, RIV, Corona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
597 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs

Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara

Abstract:

In this paper, we consider the vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs, denoted VRP-HFCC, in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with different insertion methods. All heuristics are tested on real data instances.

Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
596 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Authors: Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract:

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427
595 A Strategic Sustainability Analysis of Electric Vehicles in EU Today and Towards 2050

Authors: Sven Borén, Henrik Ny

Abstract:

Ambitions within the EU for moving towards sustainable transport include major emission reductions for fossil fuel road vehicles, especially for buses, trucks, and cars. The electric driveline seems to be an attractive solution for such development. This study first applied the Framework for Strategic Sustainable Development to compare sustainability effects of today’s fossil fuel vehicles with electric vehicles that have batteries or hydrogen fuel cells. The study then addressed a scenario were electric vehicles might be in majority in Europe by 2050. The methodology called Strategic Lifecycle Assessment was first used, were each life cycle phase was assessed for violations against sustainability principles. This indicates where further analysis could be done in order to quantify the magnitude of each violation, and later to create alternative strategies and actions that lead towards sustainability. A Life Cycle Assessment of combustion engine cars, plug-in hybrid cars, battery electric cars and hydrogen fuel cell cars was then conducted to compare and quantify environmental impacts. The authors found major violations of sustainability principles like use of fossil fuels, which contribute to the increase of emission related impacts such as climate change, acidification, eutrophication, ozone depletion, and particulate matters. Other violations were found, such as use of scarce materials for batteries and fuel cells, and also for most life cycle phases for all vehicles when using fossil fuel vehicles for mining, production and transport. Still, the studied current battery and hydrogen fuel cell cars have less severe violations than fossil fuel cars. The life cycle assessment revealed that fossil fuel cars have overall considerably higher environmental impacts compared to electric cars as long as the latter are powered by renewable electricity. By 2050, there will likely be even more sustainable alternatives than the studied electric vehicles when the EU electricity mix mainly should stem from renewable sources, batteries should be recycled, fuel cells should be a mature technology for use in vehicles (containing no scarce materials), and electric drivelines should have replaced combustion engines in other sectors. An uncertainty for fuel cells in 2050 is whether the production of hydrogen will have had time to switch to renewable resources. If so, that would contribute even more to a sustainable development. Except for being adopted in the GreenCharge roadmap, the authors suggest that the results can contribute to planning in the upcoming decades for a sustainable increase of EVs in Europe, and potentially serve as an inspiration for other smaller or larger regions. Further studies could map the environmental effects in LCA further, and include other road vehicles to get a more precise perception of how much they could affect sustainable development.

Keywords: Strategic, electric vehicles, fuel cell, LCA, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3650
594 GPS INS Integration Application in Flight Management System

Authors: Othman Maklouf, Abdurazag Ghila, Saleh Gashoot, Ahmed Abdulla

Abstract:

Flight management system (FMS) is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern aircraft no longer carry flight engineers or navigators. The primary function of FMS is to perform the in-flight management of the flight plan using various sensors (such as GPS and INS often backed up by radio navigation) to determine the aircraft's position. From the cockpit FMS is normally controlled through a Control Display Unit (CDU) which incorporates a small screen and keyboard or touch screen. This paper investigates the performance of GPS/ INS integration techniques in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated in order to understand why INS sometimes is integrated with other navigation aids and not just operating in standalone mode. Finally, both the loosely coupled and tightly coupled configurations are analyzed for several types of situations and operational conditions.

Keywords: GPS, INS, Kalman Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
593 Evaluation of Inceptor Design for Manned Multicopter

Authors: Jędrzej Minda

Abstract:

In aviation a very narrow spectrum of control inceptors exists, namely centre-sticks, side-sticks, pedals and yokes. However, new types of aircraft are emerging and with them a need for new inceptors. A manned multicopter created at AGH University of Science and Technology is an aircraft in which the pilot takes a specific orientation in which classical inceptors may be impractical to use. In this paper unique kind of control inceptor is described, which aims to provide a handling quality not unlike standard solutions and provide a firm grip point for the pilot without the risk of involuntary stick movement. Simulations of pilot-inceptor model were performed in order to compare dynamic amplification factors of design described in this paper with classical one. Functional prototype is built on which drone pilots carried out a comfort of use evaluation. This paper provides a general overview of the project, including literature review, reasoning behind components selection and mechanism design finalized by conclusions.

Keywords: Mechanisms, mechatronics, embedded control, serious gaming, rescue missions, rescue robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91
592 Quality Properties of Fermented Mugworts and Rapid Pattern Analysis of Their Volatile Flavor Components by Electric Nose Based On SAW (Surface Acoustic Wave) Sensor in GC System

Authors: Hyo-Nam Song

Abstract:

The changes in quality properties and nutritional components in two fermented mugworts (Artemisia capillaries Thumberg, Artemisiaeasiaticae Nakai) were characterized followed by the rapid pattern analysis of volatile flavor compounds by Electric Nose based on SAW(Surface Acoustic Wave) sensor in GC system. There were remarkable decreases in the pH and small changes in the total soluble solids after fermentation. The L (lightness) and b (yellowness) values in Hunter's color system were shown to be decreased, whilst the a (redness) value was increased by fermentation. The HPLC analysis demonstrated that total amino acids were increased in quantity and the essential amino acids were contained higher in A. asiaticaeNakai than in A. capillaries Thumberg. While the total polyphenol contents were not affected by fermentation, the total sugar contents were dramatically decreased. Scopoletinwere highly abundant in A. capillarisThumberg, however, it was not detected in A. asiaticaeNakai. Volatile flavor compounds by Electric Nose showed that the intensity of several peaks were increased much and seven additional flavor peaks were newly produced after fermentation. The flavor differences of two mugworts were clearly distinguished from the image patterns of VaporPrintTM which indicate that the fermentation enables the two mugworts to have subtle flavor differences.

Keywords: Mugwort, Fermentation, Electric Nose, SAW sensor, Flavor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
591 Drag Analysis of an Aircraft Wing Model withand without Bird Feather like Winglet

Authors: Altab Hossain, Ataur Rahman, A.K.M. P. Iqbal, M. Ariffin, M. Mazian

Abstract:

This work describes the aerodynamic characteristic for aircraft wing model with and without bird feather like winglet. The aerofoil used to construct the whole structure is NACA 653-218 Rectangular wing and this aerofoil has been used to compare the result with previous research using winglet. The model of the rectangular wing with bird feather like winglet has been fabricated using polystyrene before design using CATIA P3 V5R13 software and finally fabricated in wood. The experimental analysis for the aerodynamic characteristic for rectangular wing without winglet, wing with horizontal winglet and wing with 60 degree inclination winglet for Reynolds number 1.66×105, 2.08×105 and 2.50×105 have been carried out in open loop low speed wind tunnel at the Aerodynamics laboratory in Universiti Putra Malaysia. The experimental result shows 25-30 % reduction in drag coefficient and 10-20 % increase in lift coefficient by using bird feather like winglet for angle of attack of 8 degree.

Keywords: Aerofoil, Wind tunnel, Winglet, Drag Coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6230
590 Uncertainty Multiple Criteria Decision Making Analysis for Stealth Combat Aircraft Selection

Authors: C. Ardil

Abstract:

Fuzzy set theory and its extensions (intuitionistic fuzzy sets, picture fuzzy sets, and neutrosophic sets) have been widely used to address imprecision and uncertainty in complex decision-making. However, they may struggle with inherent indeterminacy and inconsistency in real-world situations. This study introduces uncertainty sets as a promising alternative, offering a structured framework for incorporating both types of uncertainty into decision-making processes.This work explores the theoretical foundations and applications of uncertainty sets. A novel decision-making algorithm based on uncertainty set-based proximity measures is developed and demonstrated through a practical application: selecting the most suitable stealth combat aircraft.

The results highlight the effectiveness of uncertainty sets in ranking alternatives under uncertainty. Uncertainty sets offer several advantages, including structured uncertainty representation, robust ranking mechanisms, and enhanced decision-making capabilities due to their ability to account for ambiguity.Future research directions are also outlined, including comparative analysis with existing MCDM methods under uncertainty, sensitivity analysis to assess the robustness of rankings,and broader application to various MCDM problems with diverse complexities. By exploring these avenues, uncertainty sets can be further established as a valuable tool for navigating uncertainty in complex decision-making scenarios.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty proximity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57
589 Modeling of Thermal Processes Associated to an Electric Arc

Authors: Allagui Hatem, Ghodbane Fathi

Abstract:

The primary objective of this paper is to study the thermal effects of the electric arc on the breaker apparatus contacts for forecasting and improving the contact durability. We will propose a model which takes account of the main influence factors on the erosion contacts. This phenomenon is very complicated because the amount of ejected metal is not necessarily constituted by the whole melted metal bath but this depends on the balance of forces on the contact surface. Consequently, to calculate the metal ejection coefficient, we propose a method which consists in comparing the experimental results with the calculated ones. The proposed model estimates the mass lost by vaporization, by droplets ejection and by the extraction mechanism of liquid or solid metal. In the one-dimensional geometry, to calculate of the contact heating, we used Green’s function which expresses the point source and allows the transition to the surface source. However, for the two- dimensional model we used explicit and implicit numerical methods. The results are similar to those found by Wilson’s experiments.

Keywords: Electric arc, thermal effect, erosion, contact, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
588 Forming the Differential-Algebraic Model of Radial Power Systems for Simulation of both Transient and Steady-State Conditions

Authors: Saleh A. Al-Jufout

Abstract:

This paper presents a procedure of forming the mathematical model of radial electric power systems for simulation of both transient and steady-state conditions. The research idea has been based on nodal voltages technique and on differentiation of Kirchhoff's current law (KCL) applied to each non-reference node of the radial system, the result of which the nodal voltages has been calculated by solving a system of algebraic equations. Currents of the electric power system components have been determined by solving their respective differential equations. Transforming the three-phase coordinate system into Cartesian coordinate system in the model decreased the overall number of equations by one third. The use of Cartesian coordinate system does not ignore the DC component during transient conditions, but restricts the model's implementation for symmetrical modes of operation only. An example of the input data for a four-bus radial electric power system has been calculated.

Keywords: Mathematical Modelling, Radial Power System, Steady-State, Transients

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
587 Enhancing Rural Agricultural Value Chains through Electric Mobility Services in Ethiopia

Authors: Clemens Pizzinini, Philipp Rosner, David Ziegler, Markus Lienkamp

Abstract:

Transportation is a constitutional part of most supply and value chains in modern economies. Smallholder farmers in rural Ethiopia face severe challenges along their supply and value chains. In particular, suitable, affordable, and available transport services are in high demand. To develop context-specific technical solutions, a problem-to-solution methodology based on the interaction with technology is developed. With this approach, we fill the gap between proven transportation assessment frameworks and general user-centered techniques. Central to our approach is an electric test vehicle that is implemented in rural supply and value chains for research, development, and testing. Based on our objective and the derived methodological requirements, a set of existing methods is  selected. Local partners are integrated in an organizational framework that executes major parts of this research endeavour in Arsi Zone, Oromia Region, Ethiopia.

Keywords: Agricultural value chain, participatory methods, agile methods, sub-Saharan Africa, Ethiopia, electric vehicle, transport service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86
586 Solar Energy for Water Conditioning

Authors: J. Pawłat, H. Stryczewska

Abstract:

Shortening of natural resources will impose greater limitations of electric energy consumption in various fields including water treatment technologies. Small water treatment installations supplied with electric energy from solar sources are perfect example of zero-emission technology. Possibility of solar energy application, as one of the alternative energy resources for decontamination processes is strongly dependent on geographical location. Various examples of solar driven water purification systems are given and design of solar-water treatment installation based on ozone for the geographical conditions in Poland are presented.

Keywords: solar energy, water purification, ozone water treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
585 Conventional Design and Simulation of an Urban Hybrid Bus

Authors: A. Khanipour, K. M. Ebrahimi, W. J. Seale

Abstract:

Due to heightened concerns over environmental and economic issues the growing important of air pollution, and the importance of conserving fossil fuel resources in the world, the automotive industry is now forced to produce more fuel efficient, low emission vehicles and new drive system technologies. One of the most promising technologies to receive attention is the hybrid electric vehicle (HEV), which consists of two or more energy sources that supply energy to electric traction motors that in turn drive the wheels. This paper presents the various structures of HEV systems, the basic theoretical knowledge for describing their operation and the general behaviour of the HEV in acceleration, cruise and deceleration phases. The conventional design and sizing of a series HEV is studied. A conventional bus and its series configuration are defined and evaluated using the ADVISOR. In this section the simulation of a standard driving cycle and prediction of its fuel consumption and emissions of the HEV are discussed. Finally the bus performance is investigated to establish whether it can satisfy the performance, fuel consumption and emissions requested. The validity of the simulation has been established by the close conformity between the fuel consumption of the conventional bus reported by the manufacturer to what has achieved from the simulation.

Keywords: Hybrid Electric Vehicle, Hybridization, LEV, HEV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
584 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor

Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi

Abstract:

The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Keywords: PMSM, Electric Vehicle, Optimal control, Traction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
583 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: Load forecasting, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
582 Optimizing the Design of Radial/Axial PMSM and SRM used for Powered Wheel-Chairs

Authors: D. Fodorean, D.C. Popa, F. Jurca, M. Ruba

Abstract:

the paper presents the optimization results for several electrical machines dedicated for powered electric wheel-chairs. The optimization, using the Hook-Jeeves algorithm, was employed based on a design approach which takes into consideration the road conditions. Also, through numerical simulations (based on finite element method), the analytical approach was validated. The optimization approach gave satisfactory results and the best suited variant was chosen for the motorization of the wheel-chair.

Keywords: electrical machines, numerical validation, optimization, electric wheel chair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
581 A Comparison of Deterministic and Probabilistic Methods for Determining the Required Amount of Spinning Reserve

Authors: A. Ehsani, A. Karimizadeh, H. Fallahi, A. Jalali

Abstract:

In an electric power system, spinning reserve requirements can be determined by using deterministic and/or probabilistic measures. Although deterministic methods are usual in many systems, application of probabilistic methods becomes increasingly important in the new environment of the electric power utility industry. This is because of the increased uncertainty associated with competition. In this paper 1) a new probabilistic method is presented which considers the reliability of transmission system in a simplified manner and 2) deterministic and probabilistic methods are compared. The studied methods are applied to the Roy Billinton Test System (RBTS).

Keywords: Reliability, Spinning Reserve, Risk, Transmission, Unit Commitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
580 Electrical Field Around the Overhead Transmission Lines

Authors: S.S. Razavipour, M. Jahangiri, H. Sadeghipoor

Abstract:

In this paper, the computation of the electrical field distribution around AC high-voltage lines is demonstrated. The advantages and disadvantages of two different methods are described to evaluate the electrical field quantity. The first method is a seminumerical method using the laws of electrostatic techniques to simulate the two-dimensional electric field under the high-voltage overhead line. The second method which will be discussed is the finite element method (FEM) using specific boundary conditions to compute the two- dimensional electric field distributions in an efficient way.

Keywords: Electrical field, unloaded transmission lines, finite element method, electrostatic images technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8327
579 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars

Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic

Abstract:

Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.

Keywords: Circular economy, electric mobility, lithium ion batteries, remanufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5251
578 Absorption Spectra of Artificial Atoms in Presence of THz Fields

Authors: B. Dahiya, K.Batra, V.Prasad

Abstract:

Artificial atoms are growing fields of interest due to their physical and optoelectronicapplications. The absorption spectra of the proposed artificial atom inpresence of Tera-Hertz field is investigated theoretically. We use the non-perturbativeFloquet theory and finite difference method to study the electronic structure of ArtificialAtom. The effect of static electric field on the energy levels of artificial atom is studied.The effect of orientation of static electric field on energy levels and diploe matrix elementsis also highlighted.

Keywords: Absorption spectra, Artificial atom, Floquet Theory, THz fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
577 Power Generation Scheduling of Thermal Units Considering Gas Pipelines Constraints

Authors: Sara Mohtashami, Habib Rajabi Mashhadi

Abstract:

With the growth of electricity generation from gas energy gas pipeline reliability can substantially impact the electric generation. A physical disruption to pipeline or to a compressor station can interrupt the flow of gas or reduce the pressure and lead to loss of multiple gas-fired electric generators, which could dramatically reduce the supplied power and threaten the power system security. Gas pressure drops during peak loading time on pipeline system, is a common problem in network with no enough transportation capacity which limits gas transportation and causes many problem for thermal domain power systems in supplying their demand. For a feasible generation scheduling planning in networks with no sufficient gas transportation capacity, it is required to consider gas pipeline constraints in solving the optimization problem and evaluate the impacts of gas consumption in power plants on gas pipelines operating condition. This paper studies about operating of gas fired power plants in critical conditions when the demand of gas and electricity peak together. An integrated model of gas and electric model is used to consider the gas pipeline constraints in the economic dispatch problem of gas-fueled thermal generator units.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
576 Gas Generator Pyrotechnics Using Gun Propellant Technology Methods

Authors: B. A. Parate

Abstract:

This research article describes the gas generator pyro-cartridge using gun propellant technology methods for fighter aircraft application. The emphasis of this work is to design and develop a gas generating device with pyro-cartridge using double base (DB) propellant to generate a high temperature and pressure gas. This device is utilised for dropping empty fuel tank in an emergency from military aircraft. A data acquisition system (DAS) is used to record time to maximum pressure, maximum pressure and time to half maximum pressure generated in a vented vessel (VV) for gas generator. Pyro-cartridge as a part of the gas generator creates a maximum pressure and time in the closed vessel (CV). This article also covers the qualification testing of gas generator. The performance parameters of pyro-cartridge devices such as ignition delay and maximum pressure are experimentally presented through the CV tests.

Keywords: Closed vessel, data acquisition, double base propellant, gas generator, ignition system, ignition delay, propellant, pyro-cartridge, pyrotechnics, vented vessel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 425
575 A New Physical Modeling for Multiquantum Well Structure APD Considering Nonuniformity of Electric Field in Active Regin

Authors: F. Barzegar, M. H. Sheikhi

Abstract:

In the present work we model a Multiquantum Well structure Separate Absorption and Charge Multiplication Avalanche Photodiode (MQW-SACM-APD), while the Absorption region coincide with the MQW. We consider the nonuniformity of electric field using split-step method in active region. This model is based on the carrier rate equations in the different regions of the device. Using the model we obtain the photocurrent, and dark current. As an example, InGaAs/InP SACM-APD and MQW-SACM-APD are simulated. There is a good agreement between the simulation and experimental results.

Keywords: Avalanche Photodiode, Physical Model, MultiquantumWell, Split Step Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
574 Design and Analysis of Extra High Voltage Non-Ceramic Insulator by Finite Element Method

Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Pratyusha

Abstract:

High voltage insulator has to withstand sever electrical stresses. Higher electrical stresses lead to erosion of the insulator surface. Degradation of insulating properties leads to flashover and in some extreme cases it may cause to puncture. For analyzing these electrical stresses and implement necessary actions to diminish the electrical stresses, numerical methods are best. By minimizing the electrical stresses, reliability of the power system will improve. In this paper electric field intensity at critical regions of 400 kV silicone composite insulator is analyzed using finite element method. Insulator is designed using FEMM-2D software package. Electric Field Analysis (EFA) results are analyzed for five cases i.e., only insulator, insulator with two sides arcing horn, High Voltage (HV) end grading ring, grading ring-arcing horn arrangement and two sides grading ring. These EFA results recommended that two sides grading ring is better for minimization of electrical stresses and improving life span of insulator.

Keywords: Polymer insulator, electric field analysis, numerical methods, finite element method, FEMM-2D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
573 Numerical Study of Airfoils Aerodynamic Performance in Heavy Rain Environment

Authors: M. Ismail, Cao Yihua, Zhao Ming, Abu Bakar

Abstract:

Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of cambered NACA 64-210 and symmetric NACA 0012 airfoils. Our results show significant increase in drag and decrease in lift. We used preprocessing software gridgen for creation of geometry and mesh, used fluent as solver and techplot as postprocessor. Discrete phase modeling called DPM is used to model the rain particles using two phase flow approach. The rain particles are assumed to be inert. Both airfoils showed significant decrease in lift and increase in drag in simulated rain environment. The most significant difference between these two airfoils was the NACA 64-210 more sensitivity than NACA 0012 to liquid water content (LWC). We believe that the results showed in this paper will be useful for the designer of the commercial aircrafts and UAVs, and will be helpful for training of the pilots to control the airplanes in heavy rain.

Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217