Search results for: laser radiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 738

Search results for: laser radiation

528 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
527 Bioceramic Scaffolds Fabrication by Rapid Prototyping Technology

Authors: F.H. Liu, S.H. Chen, R.T. Lee, W.S. Lin, Y.S. Liao

Abstract:

This paper describes a rapid prototyping (RP) technology for forming a hydroxyapatite (HA) bone scaffold model. The HA powder and a silica sol are mixed into bioceramic slurry form under a suitable viscosity. The HA particles are embedded in the solidified silica matrix to form green parts via a wide range of process parameters after processing by selective laser sintering (SLS). The results indicate that the proposed process was possible to fabricate multilayers and hollow shell structure with brittle property but sufficient integrity for handling prior to post-processing. The fabricated bone scaffold models had a surface finish of 25

Keywords: bioceramic, bone scaffold, rapid prototyping, selective laser sintering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
526 Effect of UV Radiation to Change the Properties of the Composite PA+GF

Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz

Abstract:

The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, microorganisms and other atmospheric factors.

Keywords: Composites with glass fibres, mechanical properties, polyamides, UV degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
525 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties

Authors: Jaehyug Lee, Tae-Ho Song

Abstract:

Vacuum Insulation Panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agrees well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.

Keywords: Combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3005
524 Robot Map Building from Sonar and Laser Information using DSmT with Discounting Theory

Authors: Xinde Li, Xinhan Huang, Min Wang

Abstract:

In this paper, a new method of information fusion – DSmT (Dezert and Smarandache Theory) is introduced to apply to managing and dealing with the uncertain information from robot map building. Here we build grid map form sonar sensors and laser range finder (LRF). The uncertainty mainly comes from sonar sensors and LRF. Aiming to the uncertainty in static environment, we propose Classic DSm (DSmC) model for sonar sensors and laser range finder, and construct the general basic belief assignment function (gbbaf) respectively. Generally speaking, the evidence sources are unreliable in physical system, so we must consider the discounting theory before we apply DSmT. At last, Pioneer II mobile robot serves as a simulation experimental platform. We build 3D grid map of belief layout, then mainly compare the effect of building map using DSmT and DST. Through this simulation experiment, it proves that DSmT is very successful and valid, especially in dealing with highly conflicting information. In short, this study not only finds a new method for building map under static environment, but also supplies with a theory foundation for us to further apply Hybrid DSmT (DSmH) to dynamic unknown environment and multi-robots- building map together.

Keywords: Map building, DSmT, DST, uncertainty, information fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
523 Mitigation of Radiation Levels for Base Transceiver Stations based on ITU-T Recommendation K.70

Authors: Reyes C., Ramos B.

Abstract:

This essay presents applicative methods to reduce human exposure levels in the area around base transceiver stations in a environment with multiple sources based on ITU-T recommendation K.70. An example is presented to understand the mitigation techniques and their results and also to learn how they can be applied, especially in developing countries where there is not much research on non-ionizing radiations.

Keywords: Electromagnetic fields (EMF), human exposure limits, intentional radiator, cumulative exposure ratio, base transceiver station (BTS), radiation levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2636
522 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: Climate, reanalysis, renewable energy, solar radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
521 Optical Induction of 2D and 3D Photonic Lattices in Photorefractive Materials based on Talbot effect

Authors: A. Badalyan, R. Hovsepyan, V. Mekhitaryan, P. Mantashyan, R. Drampyan

Abstract:

In this paper we report the technique of optical induction of 2 and 3-dimensional (2D and 3D) photonic lattices in photorefractive materials based on diffraction grating self replication -Talbot effect. 1D and 2D different rotational symmery diffraction masks with the periods of few tens micrometers and 532 nm cw laser beam were used in the experiments to form an intensity modulated light beam profile. A few hundred micrometric scale replications of mask generated intensity structures along the beam propagation axis were observed. Up to 20 high contrast replications were detected for 1D annular mask with 30

Keywords: Diffraction gratings, laser, photonic lattice, Talbot effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
520 Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

Authors: Phool Singh, Ashok Jangid, N. S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

Keywords: Magneto hydrodynamics, stretching sheet, thermal radiation, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
519 Dose due the Incorporation of Radionuclides Using Teeth as Bioindicators nearby Caetité Uranium Mines

Authors: Viviane S. Guimarães, Ícaro M. M. Brasil, Simara S. Campos, Roseli F. Gennari, Márcia R. P. Attie, Susana O. Souza.

Abstract:

Uranium mining and processing in Brazil occur in a northeastern area near to Caetité-BA. Several Non-Governmental Organizations claim that uranium mining in this region is a pollutant causing health risks to the local population,but those in charge of the complex extraction and production of“yellow cake" for generating fuel to the nuclear power plants reject these allegations. This study aimed at identifying potential problems caused by mining to the population of Caetité. In this, work,the concentrations of 238U, 232Th and 40K radioisotopes in the teeth of the Caetité population were determined by ICP-MS. Teeth are used as bioindicators of incorporated radionuclides. Cumulative radiation doses in the skeleton were also determined. The concentration values were below 0.008 ppm, and annual effective dose due to radioisotopes are below to the reference values. Therefore, it is not possible to state that the mining process in Caetité increases pollution or radiation exposure in a meaningful way.

Keywords: bioindicators, radiation dose, radioisotopesincorporation, uranium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4064
518 Study of a Fabry-Perot Resonator

Authors: F. Hadjaj, A. Belghachi, A. Halmaoui, M. Belhadj, H. Mazouz

Abstract:

A laser is essentially an optical oscillator consisting of a resonant cavity, an amplifying medium and a pumping source. In semiconductor diode lasers, the cavity is created by the boundary between the cleaved face of the semiconductor crystal and air, and has reflective properties as a result of the differing refractive indices of the two media. For a GaAs-air interface a reflectance of 0.3 is typical and therefore the length of the semiconductor junction forms the resonant cavity. To prevent light being emitted in unwanted directions from the junction, sides perpendicular to the required direction are roughened. The objective of this work is to simulate the optical resonator Fabry-Perot and explore its main characteristics, such as FSR, finesse, linewidth, transmission and so on, that describe the performance of resonator.

Keywords: Fabry-Perot Resonator, laser diode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8884
517 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng Dian Xun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategy of the optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. This paper explores the strategy of satellite avoidance to protect the CCD camera and also the satellite. The satellite could evasive to several target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. In addition, the fuel consumption is optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: Optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
516 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
515 Weight Loss Degradation of Hybrid Blends LLDPE/Starch/PVA upon Exposure to UV Light and Soil Burial

Authors: M. Rahmah, Noor Zuhaira Abd Aziz, M. Mohd Muizz Fahimi, M. Farhan

Abstract:

Poly bag and mulch films for agricultural field caused pose environmental problem due to the non-degradable plastics wastes upon disposal. Thus, a degradable poly bag was designed with hybrid sago starch (SS) and polyvinyl alcohol (PVA). Two Different blended compositions of SS and PVA hybrid have been compounded. Then, the hybrids blended are mixed with linear line density polyethylene (LLDPE) resin to fabricate poly bag film through conventional film blowing process. Samples of LLDPE, SS and PVA hybrid film were exposed to UV light and soil burial. The weight losses were determined during degradation process. Hybrid film by degradation of starch was found to hydrolyze and hydroxyl groups decrease on esterification upon exposure to soil burial and uv radiation. It was found out that, the hybrid film for 60% of SS composition showed greatest degradation in soil and UV radiation.

Keywords: LLDPE, PVA, sago starch, degradation, soil burial, UV radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
514 Evaluation of Classification Algorithms for Road Environment Detection

Authors: T. Anbu, K. Aravind Kumar

Abstract:

The road environment information is needed accurately for applications such as road maintenance and virtual 3D city modeling. Mobile laser scanning (MLS) produces dense point clouds from huge areas efficiently from which the road and its environment can be modeled in detail. Objects such as buildings, cars and trees are an important part of road environments. Different methods have been developed for detection of above such objects, but still there is a lack of accuracy due to the problems of illumination, environmental changes, and multiple objects with same features. In this work the comparison between different classifiers such as Multiclass SVM, kNN and Multiclass LDA for the road environment detection is analyzed. Finally the classification accuracy for kNN with LBP feature improved the classification accuracy as 93.3% than the other classifiers.

Keywords: Classifiers, feature extraction, mobile-based laser scanning, object location estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
513 Integration of CMOS Biosensor into a Polymeric Lab-on-a-Chip System

Authors: T. Brettschneider, C. Dorrer, H. Suy, T. Braun, E. Jung, R. Hoofman, M. Bründel, R. Zengerle, F. Lärmer

Abstract:

We present an integration approach of a CMOS biosensor into a polymer based microfluidic environment suitable for mass production. It consists of a wafer-level-package for the silicon die and laser bonding process promoted by an intermediate hot melt foil to attach the sensor package to the microfluidic chip, without the need for dispensing of glues or underfiller. A very good condition of the sensing area was obtained after introducing a protection layer during packaging. A microfluidic flow cell was fabricated and shown to withstand pressures up to Δp = 780 kPa without leakage. The employed biosensors were electrically characterized in a dry environment.

Keywords: CMOS biosensor, laser bonding, silicon polymer integration, wafer level packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2980
512 Optimal Design and Simulation of a Grid-Connected Photovoltaic (PV) Power System for an Electrical Department in University of Tripoli-Libya

Authors: Mustafa A. Al-Refai

Abstract:

This paper presents the optimal design and simulation of a grid-connected Photovoltaic (PV) system to supply electric power to meet the energy demand by Electrical Department in University of Tripoli Libya. Solar radiation is the key factor determining electricity produced by photovoltaic (PV) systems. This paper is designed to develop a novel method to calculate the solar photovoltaic generation capacity on the basis of Mean Global Solar Radiation data available for Tripoli Libya and finally develop a system design of possible plant capacity for the available roof area. MatLab/Simulink Programming tools and monthly average solar radiation data are used for this design and simulation. The specifications of equipments are provided based on the availability of the components in the market. Simulation results and analyses are presented to validate the proposed system configuration.

Keywords: Photovoltaic (PV), solar energy, solar irradiation, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396
511 Visualization of Latent Sweat Fingerprints Deposit on Paper by Infrared Radiation and Blue Light

Authors: Xiaochun Huang, Xuejun Zhao, Yun Zou, Feiyu Yang, Wenbin Liu, Nan Deng, Ming Zhang, Nengbin Cai

Abstract:

A simple device termed infrared radiation (IR) was developed for rapid visualization of sweat fingerprints deposit on paper with blue light (450 nm, 11 W). In this approach, IR serves as the pretreatment device before the sweat fingerprints was illuminated by blue light. An annular blue light source was adopted for visualizing latent sweat fingerprints. Sample fingerprints were examined under various conditions after deposition, and experimental results indicate that the recovery rate of the latent sweat fingerprints is in the range of 50%-100% without chemical treatments. A mechanism for the observed visibility is proposed based on transportation and re-impregnation of fluorescer in paper at the region of water. And further exploratory experimental results gave the full support to the visible mechanism. Therefore, such a method as IR-pretreated in detecting latent fingerprints may be better for examination in the case where biological information of samples is needed for consequent testing.

Keywords: Forensic science, visualization, infrared radiation, blue light, latent sweat fingerprints, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
510 Solar and Wind Energy Potential Study of Lower Sindh, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui

Abstract:

Global and diffuse solar radiation on horizontal surface of Lower Sindh, namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization for power generation in Sindh province. The results obtained show a large variation in the direct and diffuse component of solar radiation in summer and winter months in Lower Sindh (50% direct and 50% diffuse for Karachi and Hyderabad). In Nawabshah area, the contribution of diffuse solar radiation is low during the monsoon months, July and August. The KT value of Nawabshah indicates a clear sky throughout almost the entire year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even during the monsoon months. The estimated values indicate that Nawabshah has high solar potential, whereas Karachi and Hyderabad have low solar potential. During the monsoon months the Lower part of Sindh can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 m/sec to 6.9 m/sec. A wind corridor exists near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in the monsoon months of July and August, wind speeds are higher in the Lower region of Sindh.

Keywords: Hybrid power system, power generation, solar and wind energy potential, Lower Sindh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
509 Conjugate Heat and Mass Transfer for MHD Mixed Convection with Viscous Dissipation and Radiation Effect for Viscoelastic Fluid past a Stretching Sheet

Authors: Kai-Long Hsiao, BorMing Lee

Abstract:

In this study, an analysis has been performed for conjugate heat and mass transfer of a steady laminar boundary-layer mixed convection of magnetic hydrodynamic (MHD) flow with radiation effect of second grade subject to suction past a stretching sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of the viscoelastic fluid heat and mass transfer effect which have presented in governing equations, respectively. The similar transformation and the finite-difference method have been used to analyze the present problem. The conjugate heat and mass transfer results show that the non-Newtonian viscoelastic fluid has a better heat transfer effect than the Newtonian fluid. The free convection with a larger r G or c G has a good heat transfer effect better than a smaller r G or c G , and the radiative convection has a good heat transfer effect better than non-radiative convection.

Keywords: Conjugate heat and mass transfer, Radiation effect, Magnetic effect, Viscoelastic fluid, Viscous dissipation, Stretchingsheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
508 Heating of High-Density Hydrogen by High- Current Arc Radiation

Authors: A. V. Budin, Ph. G. Rutberg, M. E. Pinchuk, A. A. Bogomaz, V. Yu. Svetova

Abstract:

The investigation results of high-density hydrogen heating by high-current electric arc are presented at initial pressure from 5 MPa to 160 MPa with current amplitude up to 1.6 MA and current rate of rise 109-1011 A/s. When changing the initial pressure and current rate of rise, channel temperature varies from several electronvolts to hundreds electronvolts. Arc channel radius is several millimeters. But the radius of the discharge chamber greater than the radius of the arc channel on approximately order of magnitude. High efficiency of gas heating is caused by radiation absorption of hydrogen surrounding the arc. Current channel consist from vapor of the initiating wire. At current rate of rise of 109 A/s and relatively small current amplitude gas heating occurs due to radiation absorption in the band transparency of hydrogen by the wire vapours with photon energies less than 13.6 eV. At current rate of rise of 1011 A/s gas heating is due to hydrogen absorption of soft X-rays from discharge channel.

Keywords: High-density hydrogen heating by high-current electric arc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
507 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.

Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
506 Vehicle Position Estimation for Driver Assistance System

Authors: Hyun-Koo Kim, Sangmoon Lee, Ho-Youl Jung, Ju H. Park

Abstract:

We present a system that finds road boundaries and constructs the virtual lane based on fusion data from a laser and a monocular sensor, and detects forward vehicle position even in no lane markers or bad environmental conditions. When the road environment is dark or a lot of vehicles are parked on the both sides of the road, it is difficult to detect lane and road boundary. For this reason we use fusion of laser and vision sensor to extract road boundary to acquire three dimensional data. We use parabolic road model to calculate road boundaries which is based on vehicle and sensors state parameters and construct virtual lane. And then we distinguish vehicle position in each lane.

Keywords: Vehicle Detection, Adaboost, Haar-like Feature, Road Boundary Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
505 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: Non-isothermal wedge, thermal radiation, nanofluid, magnetic field, Soret and Dufour effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
504 The Multi-objective Optimization for the SLS Process Parameters Based on Analytic Hierarchy Process

Authors: Yang Laixia, Deng Jun, Li Dichen, Bai Yang

Abstract:

The forming process parameters of Selective Laser Sintering(SLS) directly affect the forming efficiency and forming quality. Therefore, to determine reasonable process parameters is particularly important. In this paper, the weight of each target of the forming quality and efficiency is firstly calculated with the Analytic Hierarchy Process. And then the size of each target is measured by orthogonal experiment. Finally, the sum of the product of each target with the weight is compared to the process parameters in each group and obtained the optimal molding process parameters.

Keywords: Analytic Hierarchy Process, Multi-objective optimization, Orthogonal test, Selective Laser Sintering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
503 Detection of Oxidative Stress Induced by Mobile Phone Radiation in Tissues of Mice using 8-Oxo-7, 8-Dihydro-2'-Deoxyguanosine as a Biomarker

Authors: Ahmad M. Khalil, Ahmad M. Alshamali, Marwan H. Gagaa

Abstract:

We investigated oxidative DNA damage caused by radio frequency radiation using 8-oxo-7, 8-dihydro-2'- deoxyguanosine (8-oxodG) generated in mice tissues after exposure to 900 MHz mobile phone radio frequency in three independent experiments. The RF was generated by a Global System for Mobile Communication (GSM) signal generator. The radio frequency field was adjusted to 25 V/m. The whole body specific absorption rate (SAR) was 1.0 W/kg. Animals were exposed to this field for 30 min daily for 30 days. 24 h post-exposure, blood serum, brain and spleen were removed and DNA was isolated. Enzyme-linked immunosorbent assay (ELISA) was used to measure 8-oxodG concentration. All animals survived the whole experimental period. The body weight of animals did not change significantly at the end of the experiment. No statistically significant differences observed in the levels of oxidative stress. Our results are not in favor of the hypothesis that 900 MHz RF induces oxidative damage.

Keywords: Mice, Mobile phone radiation, oxidative stress, 8-oxo-7, 8-dihydro-2'-deoxyguanosine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
502 Texture and Twinning in Selective Laser Melting Ti-6Al-4V Alloys

Authors: N. Kazantseva, P. Krakhmalev, I. Yadroitsev, A. Fefelov, N. Vinogradova, I. Ezhov, T. Kurennykh

Abstract:

Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta < 100 > (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} < -1011 > twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided.

Keywords: Additive technology, texture, Ti-6Al-4V, twins, oxygen content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
501 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method

Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil

Abstract:

The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.

Keywords: Additive manufacturing, selective laser melting, surface roughness, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
500 Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording

Authors: P. Tueku, P. Supnithi, R. Wongsathan

Abstract:

Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.

Keywords: Heat-Assisted Magnetic Recording, Thermal Williams-Comstock equation, Microtrack model, Equalizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
499 Characterization of an Extrapolation Chamber for Dosimetry of Low Energy X-Ray Beams

Authors: Fernanda M. Bastos, Teógenes A. da Silva

Abstract:

Extrapolation chambers were designed to be used as primary standard dosimeter for measuring absorbed dose in a medium in beta radiation and low energy x-rays. The International Organization for Standardization established series of reference x-radiation for calibrating and determining the energy dependence of dosimeters that are to be reproduced in metrology laboratories. Standardization of the low energy x-ray beams with tube potential lower than 30 kV may be affected by the instrument used for dosimetry. In this work, parameters of a 23392 model PTW extrapolation chamber were determined aiming its use in low energy x-ray beams as a reference instrument.

Keywords: Extrapolation chamber, low energy x-rays, standardization, x-ray dosimetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406